版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.1 多元线性回归模型及其参数估计多元线性回归模型及其参数估计2.2 多元线性回归的显著性检验多元线性回归的显著性检验2.3 利用多元线性回归方程进行预测利用多元线性回归方程进行预测2.4 解释变量的选择解释变量的选择2.5 多重共线性多重共线性2.6 预测实例预测实例第二章第二章 多重回归分析法多重回归分析法2.1 2.1 多元线性回归模型及其参数估计多元线性回归模型及其参数估计一、线性回归模型的一般形式一、线性回归模型的一般形式如果因变量(被解释变量)与各自变量(解释变量)如果因变量(被解释变量)与各自变量(解释变量)之间有线性相关关系,那么它们之间的线性总体回归之间有线性相关关系,那么
2、它们之间的线性总体回归模型可以表示为:模型可以表示为:01 122kkyxxx对每一组观测值对每一组观测值01 122iiikkiiyxxx1,2,in非随机表达式非随机表达式1201 122(,)iikiiikkie y xxxxxx可见,多元回归分析是以多个解释变量的固定值可见,多元回归分析是以多个解释变量的固定值为条件的回归分析,表示各解释变量为条件的回归分析,表示各解释变量x x值固定时值固定时y y的平均响应。的平均响应。 也被称为偏回归系数,表示在其他解释变量保也被称为偏回归系数,表示在其他解释变量保持不变的情况下,持不变的情况下, 每变化每变化1 1个单位时,引起的个单位时,引起
3、的因变量的平均变动量。或者说因变量的平均变动量。或者说 给出给出 单位变单位变化对化对y y均值的均值的“直接直接”或或“净净”(不含其他变量)(不含其他变量)影响。影响。jjxjjx写成矩阵形式为:写成矩阵形式为:yxb 其中其中12ynyyy112111222212111xkknnknxxxxxxxxx01kb12n01 122kkyxxx实际上,在多元线性回归分析中,比一元线性回归实际上,在多元线性回归分析中,比一元线性回归分析增加了一个假设条件,即自变量之间不存在线分析增加了一个假设条件,即自变量之间不存在线性关系。性关系。二、多元回归模型的基本假定二、多元回归模型的基本假定(1 1)
4、,n,i12|,0iiikiexxx(2 2),n,i212(|,.,)iiikivarxxx等方差性等方差性(3 3)无序列相关无序列相关()01 2ijcov,ij,i, j, ,n(4 4)()01 2iicov,xi, ,n(5 5)进一步假定)进一步假定2(0)i n,(6 6)各自变量之间不存在显著相关关系各自变量之间不存在显著相关关系nkxrank)(即即 ), 0(2nin其中其中 ni是是 n阶单位方阵阶单位方阵 预测模型预测模型01 122iikkiyxxxiiieyy是观测值与预测值(回归值)之间的离差是观测值与预测值(回归值)之间的离差用最小二乘法估计回归参数 k,10
5、考虑 01(,)ekqq使 ),(min),(1010kkqq20111()niikikiyxx分别求 eq关于 k,10的偏导数,并令其为零00bbkebbeqq三、参数估计方法三、参数估计方法最小二乘估计最小二乘估计整理得正规方程组 niniiikniikkniiikikniniiiniikikniiininiiniikkiyxxxxxyxxxxxyxxn1112111011111121110111110其矩阵形式为 yxbxxtt解得 yxxxbtt1)(所以多元线性回归方程的矩阵形式为yxxxxbxytt1)(一元回归的参数估计是多元回归参数估计的特例。一元回归的参数估计是多元回归参数
6、估计的特例。min12niieqxbxbyxbxbyyyxbyxbyxbyxby)()()(根据:根据:1(),( )22(0)abb ay xbb x yy xbbxyqx yxxbbbxxxy 所所以以:与与是是同同值值四、最小二乘估计量(olse)的统计性质0,1,2,jk()212()()tjjjjjvarx xc其中, 是 主对角线上的元素。jjc1()tx x可以证明, 具有最小方差的特性。(证明略)j与一元线性回归相比, k元线性回归的参数估计量也 有类似的性质.例如: k,10都是 nyyy,21的线性组合; k,10分别是 k,10的无偏估计; )(,(12xxbnbt等.且
7、和一元线性回归类似有平方和分解 21()nieiyyqs回2211()()nntiiiiisyyyy22(1)eqnk而五、随机误差项的方差的估计量从而 12knqee21 knqee2的无偏估计为 221()11niieiyyqnknk它的算术方根称为估计标准误差,记为:21()11niieiyyqnknk 此时,估计量的标准差可表示为:()jjjsvar221()1niiijjujjyyccnk 是 主对角线上的元素(j=0,1,k)。jjc1()tx x六、回归系数的置信区间由于 ; ;()jje2var()jjjc故可得的置信度为 的置信区间为:12222(1),(1)jjjjjjtn
8、kctnkc统计软件自动给出各回归系数的上下限七、例2.1 已知某地区的相关数据如右表所示,试求该回归方程。解:使用eviews实现回归,得到的方程为 这说明,该地区收入每增加1万元,消费增加0.497万元,人口每增加1万人消费增加0.665万元。iiix.x.y年份消费收入人口1994913.148.219959.513.948.919961013.849.54199710.614.850.25199813.416.451.02199916.220.951.84200017.724.253.76200120.128.153.69200221.830.154.55200325.335.855.
9、35200431.348.556.1620053654.856.982.2 2.2 多元线性回归的显著性检验多元线性回归的显著性检验一、经济检验一、经济检验二、拟合优度检验二、拟合优度检验三、回归方程的显著性检验三、回归方程的显著性检验四、回归系数的显著性检验四、回归系数的显著性检验五、序列相关检验五、序列相关检验一、经济检验(逻辑检验)一、经济检验(逻辑检验)1. 1. 检验内容:参数估计值的符号和大小是否与检验内容:参数估计值的符号和大小是否与经济理论和经济实际相符合。经济理论和经济实际相符合。2. 2. 回归系数的估计值与实际相反的原因回归系数的估计值与实际相反的原因(1 1)某些变量的
10、取值范围太窄;)某些变量的取值范围太窄;(2 2)模型中遗漏了某些重要因素;)模型中遗漏了某些重要因素;(3 3)模型中自变量之间有较强的线性关系。)模型中自变量之间有较强的线性关系。二、拟合优度检验二、拟合优度检验1.1.判定系数判定系数 与修正判定系数与修正判定系数 判定系数的大小还取决于包含在模型中的自变量判定系数的大小还取决于包含在模型中的自变量的个数。的个数。rr22222()()1()()iiiiiyyyyryyyy 在样本容量一定得情况下,增加解释变量必定使在样本容量一定得情况下,增加解释变量必定使得自由度减少,所以调整的思路是将残差平方和与得自由度减少,所以调整的思路是将残差平
11、方和与总离差平方和分别除以各自的自由度,以剔除变量总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响。记为调整的可决系数。个数对拟合优度的影响。记为调整的可决系数。2111sse nkrsst n 其中其中n-k-1n-k-1为残差平方和的自由度,为残差平方和的自由度,n-1n-1为总离差平方为总离差平方和的自由度。显然,如果增加的解释变量没有解释能和的自由度。显然,如果增加的解释变量没有解释能力,则对残差平方和的减少没有多大帮助,却增加待力,则对残差平方和的减少没有多大帮助,却增加待估参数的个数,从而使估参数的个数,从而使 有较大幅度的下降。有较大幅度的下降。2r2.2.修正判
12、定系数修正判定系数 的计算的计算r2211 (1)1nrrnk 注:注:(1 1)如果)如果k=0k=0,则,则(2 2)如果)如果k0k0,则,则(3 3) 有可能为负值。有可能为负值。2rr rr2r三、回归方程的显著性检验1. 检验内容:检验因变量和所有自变量的线性关系。2. 建立原假设和备择假设:0不全为ik:h:h3. 构造统计量(1)1msrssr kf f k,nkmsesse nk -4. 在显著性水平 条件下的临界值(1)f k,nk5. 判断:如果采用样本数据计算的结果 , 则拒绝原假设,认为因变量和该自变量之间的线性关系显著。(2)ff k,nkf f检验通不过的可能原因
13、检验通不过的可能原因(1 1)选择自变量时漏掉了某些有重要影响)选择自变量时漏掉了某些有重要影响 的因素;的因素;(2 2)自变量与因变量的关系是非线性的。)自变量与因变量的关系是非线性的。四、回归系数的显著性检验1. 检验内容:检验因变量和每个自变量的线性关系。2. 建立原假设和备择假设:01:0:01 2iihhi, ,k3. 构造统计量(1)()iiit t nks 4.在显著性水平 条件下的临界值21tnk()5.判断:如果采用样本数据计算的结果 , 则拒绝原假设,认为因变量和该自变量之间的线性关系显著。)k(nttit t检验通不过的可能原因检验通不过的可能原因(1 1)选择的自变量
14、对因变量事实上并无显著影响;)选择的自变量对因变量事实上并无显著影响;(2 2)选择的自变量具有多重共线性。)选择的自变量具有多重共线性。五、序列相关检验(dw检验)1. 检验内容:检验随机误差项的无序列相关假设 是否成立。2. 方法:与一元回归相同。六、多元回归的显著性检验小结拟合优度的检验需要采用修正判定系数;回归方程的显著性检验和回归系数的显著性检验不再一致,需要分别进行;序列相关检验与一元回回归是一致的。七、续例2.2,给定显著性水平 ,进行检验解:根据运行结果(1)方程的拟合优度较高;(2)方程通过显著性检验;(4)回归系数的显著性检验 ,均大于临界值3.201,所以回归系数均显著。
15、(3) 在2附近,不存在序列相关。.r7),(ff.9226. 4948.188805. 0956. 1dw.t.t2.3 利用多元线性回归方程进行预测一、点预测当给定自变量的某一特定值为对因变量进行点估计为用矩阵表示为 。二、区间预测 给定置信水平 ,置信区间为其中, 是自由度为年n-k-1的t分布临界值。010200(1,)kxxxx001 100kkyxx00yx b21000(1)1()ttytnkxx xx1t2.4 2.4 解释变量的选择解释变量的选择一、因素分析一、因素分析 因素分析是一种定性分析。它是预测时选择自变量的第一步。凭借对预测对象的熟悉、了解,分析找到影响预测对象的所
16、有因素,从中选择。二、简单相关分析二、简单相关分析 分别计算预测对象与各影响因素的简单相关系数,选择那些与预测对象相关程度高者作为自变量。 三、逐个剔除法(后退法)三、逐个剔除法(后退法) 首先将与预测对象有关的全部因素引入方程,建立模型,然后依据每个回归系数的t值大小,逐个剔除那些不显著的变量,直到模型中包含的变量都是影响预测对象的显著因素为止。(1)当不显著的变量较多时,不能同时剔除,要从最小的那个系数所对应的变量开始逐一删除。注意:(2)删除一个变量后腰观察其他统计量的变化,如果有所改善,认为剔除是适宜的;否则应保留在模型中。四、前进法四、前进法1、基本思想:由少到多,每次增加一个自变量
17、,直至没有可引入的变量为止。2. 具体做法:(1)对于全部k个自变量,分别对因变量y建立k个一元线性回归方程,并分别计算这k个一元回归方程回归系数的t值,选择最显著的一个引入。(2)因变量y分别与 ,建立k-1个二元线性回归方程,对这k-1个回归方程中的回归系数 进行t检验,选择最显著的一个引入。1213141( ,) ( ,) ( ,)( ,)kx xx xx xx x, ,,2,3,jxjk(3)依上述方法接着做下去。直至所有未被引入方程的自变量t检验通过不了时,得到的回归方程就是最终确定的方程。五、五、 逐步回归法逐步回归法1. 基本思想:有进有出。2.具体做法 将变量一个一个引入,引入
18、变量的条件是其t统计量经检验是显著的。即每引入一个自变量后,对已经被选入的变量要进行逐个检验,当原引入的变量由于后面变量的引入而变得不再显著时,要将其剔除。 这个过程反复进行,直到既无显著的自变量选入,也无不显著自变量从回归方程中剔除为止。这样就保证了最后所得的回归子集是“最优”回归子集。 尽管数学方法对变量的正确选择可能有一些帮尽管数学方法对变量的正确选择可能有一些帮助,但在处理具体问题时,变量的正确选择在根本助,但在处理具体问题时,变量的正确选择在根本上还是要依赖于所研究问题本身的上还是要依赖于所研究问题本身的专业知识和实践专业知识和实践经验经验。 当应用某种准则和方法选出的当应用某种准则
19、和方法选出的“最优最优”变量组变量组明显地与实际问题本身的专业理论不一致时,需要明显地与实际问题本身的专业理论不一致时,需要首先重新考虑我们的统计结论。首先重新考虑我们的统计结论。 不能把自变量选择方法看成僵死不能把自变量选择方法看成僵死的的“教条教条”机械搬用。机械搬用。2.5 多重共线性多重共线性 多重共线性即自变量之间的线性约束,是由两多重共线性即自变量之间的线性约束,是由两个或更多个自变量具有高度线性相关而致。个或更多个自变量具有高度线性相关而致。 如在如在居民家庭的消费支出居民家庭的消费支出回归分析中,选择回归分析中,选择家家庭收入庭收入、家庭储蓄家庭储蓄及及家庭人口家庭人口,这三个
20、自变量之间,这三个自变量之间也表现为较高度的相关。也表现为较高度的相关。一、多重共线性出现的原因一、多重共线性出现的原因(1)各经济变量之间存在内在联系)各经济变量之间存在内在联系如生产函数表示为如生产函数表示为qak lq表示产值,表示产值,k是资金,是资金,l是劳动。是劳动。一般来说大企业有雄厚的资金和充足的劳动力,而一般来说大企业有雄厚的资金和充足的劳动力,而小企业的资金和劳动力都较小。这说明资金和劳动小企业的资金和劳动力都较小。这说明资金和劳动力之间有内在的联系。因而存在多重共线性。力之间有内在的联系。因而存在多重共线性。(2)各经济变量在时间上有共同增长的趋势)各经济变量在时间上有共
21、同增长的趋势经济、人民群众收入、消费支出、储蓄经济、人民群众收入、消费支出、储蓄(3 3)在建模时引入了一些解释变量的滞后值作)在建模时引入了一些解释变量的滞后值作为新的解释变量。为新的解释变量。如,在研究消费函数时,不仅把现期收入而且把如,在研究消费函数时,不仅把现期收入而且把上期的收入都作为解释变量,这就明显地出现多上期的收入都作为解释变量,这就明显地出现多重共线性。重共线性。二、多重共线性的基本性质二、多重共线性的基本性质1 1、改变回归系数、改变回归系数以两个自变量完全相关为例以两个自变量完全相关为例如果如果 , 则则 11220a xa x1212axxa 即即21xax112111
22、11122212121211111111xnnnnxxxaxxxxaxxxxax最小二乘法,回归系数最小二乘法,回归系数()t1tbx xx y1x当当 和和 完全相关时,显然,完全相关时,显然, . .2xtx x =0()t1x x不存在,回归系数也不存在不存在,回归系数也不存在.()t1x x不存在,回归系数也不存在不存在,回归系数也不存在.1x当当 和和 不是完全相关,而是高度相关时,不是完全相关,而是高度相关时,2xtx x接近于零。这时接近于零。这时1().() .()t1ttttbx xx yx xx yx xb表现出不确定性。表现出不确定性。多重共线性的存在,改变了回归系数多重
23、共线性的存在,改变了回归系数b b,并因,并因此使其标准差增大,以致使该参数的此使其标准差增大,以致使该参数的t t检验通检验通不过。不过。有兴趣参阅有兴趣参阅p57 2-d p57 2-d 当多重共线性存在时,任何一个自变量的回归系数,当多重共线性存在时,任何一个自变量的回归系数,依赖于包括在模型中的其他自变量。所以,回归系依赖于包括在模型中的其他自变量。所以,回归系数并不反映方程中任何一具体自变量对因变量的影数并不反映方程中任何一具体自变量对因变量的影响。响。2、不降低模型的拟合能力、不降低模型的拟合能力 回归方程的回归方程的f f检验和拟合优度检验和拟合优度r r2 2,在某种意义,在某种意义上都反映变量上都反映变量y y与诸与诸x x之间的线性回归关系,或者说之间的线性回归关系,或者说反映回归模型对因变量实际观测值的拟合能力。反映回归模型对因变量实际观测值的拟合能力。多重共线性的存在不妨碍这种拟合能力。多重共线性的存在不妨碍这种拟合能力。3 3、对回归平方和的影响、对回归平方和的影响 存在多重共线性时,一个自变量引起总离差存在多重共线性时,一个自变量引起总离差的减少必须看作是与包括在同一方程中的其他自的减少必须看作是与包括在同一方程中的其他自变量相关连。变量相关连。因此,没有一个唯一的平方和能属于某一自变量因此,没有一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营销活动执行合同
- 家政工合同范本家主
- 合同补充协议细节
- 工作失误保证书范本
- 基础商业物品采购合同
- 就读保证书范文的示例文本
- 农村地基买卖合同签订费用是多少详解
- 世界博物馆日活动
- 物业管理 补充合同模板
- 商品合同和服务合同模板
- 宜宾市2022级(2025届)高三第一次诊断性测试(一诊)历史试卷(含答案)
- 2024-2025部编版语文一年级上册8-比尾巴Repaired
- 2023年中国建筑第八工程局有限公司招聘考试真题
- 2024年湖北省公务员考试《行测》真题及答案解析
- 2023年全国社会保障基金理事会招聘考试真题
- 停车场硬化施工方案及管理措施
- 2024年国家焊工职业技能理论考试题库(含答案)
- 湖北省十堰市第二中学2024-2025学年七年级上学期期中考试语文试题(含答案)
- 部编 2024版历史七年级上册期末(全册)复习卷(后附答案及解析)
- 护理病侵入性肺曲霉菌病案临床病例呼吸科
- GB 15740-2024汽车防盗装置
评论
0/150
提交评论