下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、韦达定理在圆锥曲线中的应用1.(本小题满分12分)已知长方形abcd,bc=1。以ab的中点o为原点建立如图所示的平面直角坐标系xoy.()求以a、b为焦点,且过c、d两点的椭圆的标准方程;()过点p(0,2)的直线交()中椭圆于m,n两点,是否存在直线,使得弦mn为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由。2.(本小题满分12分)已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.直线与轴正半轴和轴分别交于点、,与椭圆分别交于点、,各点均不重合且满足(1)求椭圆的标准方程;(2)若,试证明:直线过定点并求此定点.3. (本小题满分12分)设椭圆的左焦点为f, 离心
2、率为, 过点f且与x轴垂直的直线被椭圆截得的线段长为. () 求椭圆的方程; () 设a, b分别为椭圆的左右顶点, 过点f且斜率为k的直线与椭圆交于c, d两点. 若, 求k的值. 4.(2013年高考江西卷)如图,椭圆经过点离心率,直线的方程为.(1)求椭圆的方程;(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得?若存在求的值;若不存在,说明理由.5.(2009汕头)如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点m(2,1),平行于om的直线l在y轴上的截距为m(m0),l交椭圆于a、b两个不同点。 (1)求椭圆的方
3、程; (2)求m的取值范围; (3)求证直线ma、mb与x轴始终围成一个等腰三角形.6.【2015江苏高考,18】(本小题满分16分)如图,在平面直角坐标系xoy中,已知椭圆的离心率为,且右焦点f到直线的距离为3. (1)求椭圆的标准方程; (2)过f的直线与椭圆交于a,b两点,线段ab的垂直平分线分别交直线l和ab于 点p,c,若pc=2ab,求直线ab的方程.baoxylpc7.已知平面内一动点p到点f(1,0)的距离与点p到y轴的距离的差等于1.(1)求动点p的轨迹c的方程;(2)过点f作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹c相交于点a,b,l2与轨迹c相交于点d,e,求
4、·的最小值 8.(本题满分14分)已知是以点为圆心的圆上的动点,定点.点在上,点在上,且满足动点的轨迹为曲线. ()求曲线的方程;()线段是曲线的长为的动弦,为坐标原点,求面积的取值范围.9(2013年普通高等学校招生统一考试浙江数学(理)试题)如图,点是椭圆的一个顶点,的长轴是圆的直径.是过点且互相垂直的两条直线,其中交圆于两点,交椭圆于另一点(1)求椭圆的方程; (2)求面积取最大值时直线的方程.xoybl1l2pda(第21题图)10.(山东省青岛一中2013届高三1月调研理)(本大题满分13分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点p(4,0)且不垂直于x轴直线与椭圆c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度仓储物流供应链管理与运输服务合同3篇
- 2024版土地免租租赁合同范本
- 二零二五年度旋挖钻机在城市地铁建设中的应用合同3篇
- 二零二五年度豪华家装主材代购服务协议3篇
- 专业版融资担保协议2024年版详尽条款一
- 2024年电商渠道联合运营协议版B版
- 二零二五年度甲乙双方合作供应新能源设备协议2篇
- 二零二五版汽车行业人才培训股份购买与就业服务合同3篇
- 2024新疆瓜果种植基地与电商平台合作分红协议3篇
- 二零二五版矿产废石采购及再生利用合作协议3篇
- 黄金买卖合同范本
- 米-伊林《十万个为什么》阅读练习+答案
- 碎屑岩油藏注水水质指标及分析方法
- 【S洲际酒店婚礼策划方案设计6800字(论文)】
- 医养康养园项目商业计划书
- 《穿越迷宫》课件
- 《C语言从入门到精通》培训教程课件
- 2023年中国半导体行业薪酬及股权激励白皮书
- 2024年Minitab全面培训教程
- 社区电动车棚新(扩)建及修建充电车棚施工方案(纯方案-)
- 项目推进与成果交付情况总结与评估
评论
0/150
提交评论