含参不等式的解法稻谷书屋_第1页
含参不等式的解法稻谷书屋_第2页
含参不等式的解法稻谷书屋_第3页
含参不等式的解法稻谷书屋_第4页
含参不等式的解法稻谷书屋_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。一 二次项系数为常数例1、解关于x的不等式:解:原不等式可化为:(x-1)(x+m)>0 (两根是1和-m,谁大?) (1)当1<-m即m<-1时,解得:x<1或x>-m (2)当1=-m即m=-1时,不等式化为: x1(3

2、)当1>-m即m>-1时,解得:x<-m或x>1综上,不等式的解集为: 例2:解关于的不等式: (不能因式分解)解: (方程有没有根,取决于谁?)(i)(ii)两根为,. 综上,不等式的解集为:(1)当时,解集为;(2)当时,解集为()();(3)当时,解集为()();(4)当或时,解集为()();二二次项系数含参数例3、解关于的不等式:解:若,原不等式若,原不等式或若,原不等式 其解的情况应由与1的大小关系决定,故(1)当时,式的解集为;(2)当时,式;(3)当时,式.综上所述,不等式的解集为:当时,;当时,;当时,;当时,;当时,.例4、解关于的不等式:解: (1)

3、当时,(2)当时, 此时 >0两根为,. 解得:(3)当a<0时, 原式可化为:当即时,解集为r;当即时,解得:;当即时解得: 综上,(1)当时,解集为(,); (2)当时,解集为; (3)当时,解集为()(); (4)当时,解集为()().上面四个例子,尽管分别代表了四种不同的类型,但它们对参数都进行了讨论,看起来比较复杂,特别是对参数的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数的分类是根据不等式中二次项系数等于零和判别式时所得到的的值为数轴的分点进行分类,如:解关于的不等式:解: 或;或;当时,且,解集为;当时,且,解集为()();当时,且,解集为()();当时,解集为();当时,且,解集为(,);当时,解集为();当时,且,解集为()();当时,且,解集为()();当时,且,解集为.综上,可知当或时,解集为;当时,()();当或时,解集为()();当时,解集为();当时,解集为(,);当时,解集为();当时,解集为()().通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论