![热分析动力学_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/cdd34109-40db-4e52-a097-01fa8a2b1139/cdd34109-40db-4e52-a097-01fa8a2b11391.gif)
![热分析动力学_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/cdd34109-40db-4e52-a097-01fa8a2b1139/cdd34109-40db-4e52-a097-01fa8a2b11392.gif)
![热分析动力学_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/cdd34109-40db-4e52-a097-01fa8a2b1139/cdd34109-40db-4e52-a097-01fa8a2b11393.gif)
![热分析动力学_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/cdd34109-40db-4e52-a097-01fa8a2b1139/cdd34109-40db-4e52-a097-01fa8a2b11394.gif)
![热分析动力学_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-10/29/cdd34109-40db-4e52-a097-01fa8a2b1139/cdd34109-40db-4e52-a097-01fa8a2b11395.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、04热分析动力学热分析动力学热分析动力学概述热分析动力学概述五十年代科学技术的迅速发展特别是航天技术的兴起,迫切需五十年代科学技术的迅速发展特别是航天技术的兴起,迫切需要耐高温的高分子材料。研究高分子材料的热稳定性和使用寿要耐高温的高分子材料。研究高分子材料的热稳定性和使用寿命促进了热重法用于反应动力学的研究。日前,热重法已广泛命促进了热重法用于反应动力学的研究。日前,热重法已广泛用于无机物的脱水、绝食物的热分解、石油高温裂解和煤的热用于无机物的脱水、绝食物的热分解、石油高温裂解和煤的热裂解等的反应动力学研究。裂解等的反应动力学研究。虽然热分析研究反应动力学有许多优点如快速、试样用量少、虽然热
2、分析研究反应动力学有许多优点如快速、试样用量少、不需要分析反应物和产物等,但是由于热分析方法的影响因素不需要分析反应物和产物等,但是由于热分析方法的影响因素多、重复性差和误差较大等缺点,因此在利用热分析法研究反多、重复性差和误差较大等缺点,因此在利用热分析法研究反应动力学时要谨慎,并不是所有反应都适用。应动力学时要谨慎,并不是所有反应都适用。热分析动力学概述热分析动力学概述 近几十年来,热重法在测定动力学参数方面,不仅应用领域近几十年来,热重法在测定动力学参数方面,不仅应用领域宽,而且研究的反应类型比较多如热分解反应、脱水反应、结宽,而且研究的反应类型比较多如热分解反应、脱水反应、结品反应等等
3、,由此而积累了大量有关动力学方面的研究资料。品反应等等,由此而积累了大量有关动力学方面的研究资料。在实验方法、数据处理和理论上也有较大的发展,达些都为热在实验方法、数据处理和理论上也有较大的发展,达些都为热重法研究反应动力学打下了牢固的基础。重法研究反应动力学打下了牢固的基础。热分析动力学特点热分析动力学特点1. 热分析动力学方法的信息来源是体系变化过程中的物理性质的变热分析动力学方法的信息来源是体系变化过程中的物理性质的变化,因而它对体系所测物理性质以外的其它性质没有任何限制条件,化,因而它对体系所测物理性质以外的其它性质没有任何限制条件,即具有即具有非特异性非特异性的特点。但这种非特异性是
4、相对的,即热分析方法的特点。但这种非特异性是相对的,即热分析方法只对其测定的物理性质的变化有响应。只对其测定的物理性质的变化有响应。2. 现代热分析仪器灵敏度高,热分析动力学方法具有现代热分析仪器灵敏度高,热分析动力学方法具有响应速度快,响应速度快,样品用量少,分析时间短样品用量少,分析时间短等优点。等优点。3. 热分析动力学方法直接检测的是体系的某一物理性质的变化,可热分析动力学方法直接检测的是体系的某一物理性质的变化,可以以同时得到反应过程中相应物理性质变化的静态信息和动态动力学同时得到反应过程中相应物理性质变化的静态信息和动态动力学信息信息。 热分析动力学特点热分析动力学特点4. 热分析
5、动力学方法可以热分析动力学方法可以原位、在线、不干扰地连续检测原位、在线、不干扰地连续检测一个反应,一个反应,从而具有以下优点:从而具有以下优点:(1)可以得到整个过程完整的动力学信息;)可以得到整个过程完整的动力学信息;(2)动力学测量结果比非原位的采样方法更为准确;)动力学测量结果比非原位的采样方法更为准确;(3)测量过程中无需在体系中添加任何试剂,反应后的体系可以很)测量过程中无需在体系中添加任何试剂,反应后的体系可以很方便地进行后续研究与分析;方便地进行后续研究与分析;(4)操作比较简便,不需要在特定的时间点进行采样分析。)操作比较简便,不需要在特定的时间点进行采样分析。 热分析动力学
6、特点热分析动力学特点5.热分析方法的影响因素很多,往往重复性较差,实验误差较大,而热分析方法的影响因素很多,往往重复性较差,实验误差较大,而且不是所有的化学反应都可以用热分析动力学研究。且不是所有的化学反应都可以用热分析动力学研究。热分析方法常常用于研究凝聚态特别是固态反应,不同的热分析方热分析方法常常用于研究凝聚态特别是固态反应,不同的热分析方法只适用于相应的反应体系。法只适用于相应的反应体系。例如,气例如,气-气反应不宜用热分析方法,高聚物晶型转变动力学不宜采气反应不宜用热分析方法,高聚物晶型转变动力学不宜采用用TG法进行研究,而法进行研究,而DTA或或DSC是研究高聚物晶型转变动力学的最
7、是研究高聚物晶型转变动力学的最佳方法。佳方法。 热分析动力学的基本原理热分析动力学的基本原理当全自动的热分析仪诞生后,研究者在热分析的动力学研究领域进当全自动的热分析仪诞生后,研究者在热分析的动力学研究领域进行了开创性的工作。行了开创性的工作。在上世纪在上世纪50年代,年代,Borchardt等提出了最广泛采用的动力学方法,并等提出了最广泛采用的动力学方法,并采用采用DTA技术研究了氯化重氮苯的热分解反应动力学。技术研究了氯化重氮苯的热分解反应动力学。Freeman等采用等采用TG进行了早期的热分解动力学研究。进行了早期的热分解动力学研究。Kissinger提出了一个从提出了一个从DTA曲线的
8、峰尖温度求算反应活化能的常用曲线的峰尖温度求算反应活化能的常用方法。方法。早期的热分析动力学研究方法是建立在假定反应机理是简单级数反早期的热分析动力学研究方法是建立在假定反应机理是简单级数反应的基础上。然而,许多反应,特别是一些固态反应、高聚物的降应的基础上。然而,许多反应,特别是一些固态反应、高聚物的降解反应,反应机理非常复杂,常常用一个通式解反应,反应机理非常复杂,常常用一个通式f(a)来代表反应机理。来代表反应机理。 热分析动力学的基本原理热分析动力学的基本原理热分析动力学是建立在化学热力学、化学动力学及热分析技术基础热分析动力学是建立在化学热力学、化学动力学及热分析技术基础上的一门分支
9、学科。它的基本思想是,用化学动力学的知识,研究上的一门分支学科。它的基本思想是,用化学动力学的知识,研究用热分析方法测定得到的物理量(如质量、温度、热量、模量和尺用热分析方法测定得到的物理量(如质量、温度、热量、模量和尺寸等)的变化速率与温度之间的关系。寸等)的变化速率与温度之间的关系。热分析动力学方法从根本上说是基于这样一个基本原理:在程序控热分析动力学方法从根本上说是基于这样一个基本原理:在程序控制温度下,用物理方法(如制温度下,用物理方法(如TG法、法、DTA法或法或DSC法等)监测研究体法等)监测研究体系在反应过程中物理性质(如质量、样品与参比物之间的温度差、系在反应过程中物理性质(如
10、质量、样品与参比物之间的温度差、热流差或功率差等)随反应时间或温度的变化,并且监测的物理性热流差或功率差等)随反应时间或温度的变化,并且监测的物理性质的变化正比于反应进度或反应速率。质的变化正比于反应进度或反应速率。 非等温法研究动力学过程的优点非等温法研究动力学过程的优点 (1)能在反应开始到结束的整个温度范围内连续计算动力学参数;)能在反应开始到结束的整个温度范围内连续计算动力学参数;(2)在等温法过程中,样品必须升到一定温度并有明显的反应才可)在等温法过程中,样品必须升到一定温度并有明显的反应才可测定,很难严格控制反应的始末态,这样的结果往往令人怀疑,而测定,很难严格控制反应的始末态,这
11、样的结果往往令人怀疑,而非等温法无此问题;非等温法无此问题;(3)一条非等温热分析曲线相当于无数条等温热分析曲线,实验样)一条非等温热分析曲线相当于无数条等温热分析曲线,实验样品用量少;品用量少;(4)对于反应进度的分析简单快速,节省时间。)对于反应进度的分析简单快速,节省时间。因此,非等温动力学逐渐成为热分析动力学(因此,非等温动力学逐渐成为热分析动力学(Thermal Analysis Kinetics,TAK)的核心。近半个世纪以来在各个方面均有很大发展。)的核心。近半个世纪以来在各个方面均有很大发展。非等温法研究动力学过程的特点非等温法研究动力学过程的特点 非等温法研究非均相体系的非等
12、温法研究非均相体系的TAK过程中,基本上沿用了等温、均相过程中,基本上沿用了等温、均相体系的动力学理论和动力学方程,并作了相应的调整以适应非等温体系的动力学理论和动力学方程,并作了相应的调整以适应非等温非均相体系的需要非均相体系的需要 。1. 均相体系的浓度(均相体系的浓度(c)的概念在非均相体系中不再适用,用反应转)的概念在非均相体系中不再适用,用反应转化百分率(化百分率(a)来表示非均相体系中的反应进度。考虑到非均相反应)来表示非均相体系中的反应进度。考虑到非均相反应的复杂性,除了均相反应中的简单级数反应动力学方程外,从的复杂性,除了均相反应中的简单级数反应动力学方程外,从20世世纪纪30
13、年代以来建立了许多不同的动力学模型函数年代以来建立了许多不同的动力学模型函数f(a)来描述非均相反来描述非均相反应的动力学过程。应的动力学过程。2. 早期的动力学研究工作都是在等温条件下进行的,后来在线性升早期的动力学研究工作都是在等温条件下进行的,后来在线性升温条件下进行动力学研究,通常升温速率为温条件下进行动力学研究,通常升温速率为 ,动力学方程作了如下,动力学方程作了如下变形:变形:dt = dT/ 。 非等温法研究动力学过程的特点非等温法研究动力学过程的特点 3. 在非等温非均相体系中继续沿用在等温均相反应体系中的动力学在非等温非均相体系中继续沿用在等温均相反应体系中的动力学方程。在绝
14、大多数场合使用的是方程。在绝大多数场合使用的是Arhenius公式来描述反应速率常数公式来描述反应速率常数k(T)与热力学温度与热力学温度T关系:关系:RTEAk e其中其中A为指前因子,为指前因子,E为活化能,为活化能,R为普适气体常数。由此,在升为普适气体常数。由此,在升温速率为温速率为b时,非等温非均相反应的动力学方程就有如下形式:时,非等温非均相反应的动力学方程就有如下形式: fATRTE edd动力学研究的目的就是求算能描述某反应的动力学研究的目的就是求算能描述某反应的“动力学三因子动力学三因子” (Kinetic Triplet),即指前因子,即指前因子A、活化能、活化能E和动力学
15、模型函数和动力学模型函数f(a)。 微分法微分法 在热分析实验过程中,仪器直接记录的信息曲线是在热分析实验过程中,仪器直接记录的信息曲线是a-t的曲线(或的曲线(或a-T的曲线)。热分析仪附带微分单元,或配上计算机进行图形转换处的曲线)。热分析仪附带微分单元,或配上计算机进行图形转换处理,得到理,得到da/dt-T曲线(或曲线(或da/dT-T曲线)采用上式即可进行动力学处曲线)采用上式即可进行动力学处理。由于采用的是理。由于采用的是a对对t(或(或a对对T)一阶微分数据,这种方法常常叫)一阶微分数据,这种方法常常叫微分法,微分法,f(a)又称为微分形式的动力学模型函数。又称为微分形式的动力学
16、模型函数。 积分法积分法 上式进行移项并两端同时积分得到上式进行移项并两端同时积分得到 fATRTE edd 000expdexpd TTTGAE RTTAE RTTAER P u式中,积分下限式中,积分下限T0的积分值趋近于的积分值趋近于0,积分下限可由,积分下限可由0代替。代替。P(u)称称为温度积分(为温度积分(Temperature Integral),其形式如下),其形式如下 2duuP ueuu式中式中 u = E/RT由于由于P(u)在数学上得不到有限的精确解,常常由一个近似公式代替。在数学上得不到有限的精确解,常常由一个近似公式代替。直接将直接将a-T数据引入上式,同样可以进行
17、动力学处理。这种数据处数据引入上式,同样可以进行动力学处理。这种数据处理方法常常叫积分法,理方法常常叫积分法,G(a)又称为积分形式的动力学模型函数。又称为积分形式的动力学模型函数。 非等温法研究动力学过程的局限性非等温法研究动力学过程的局限性 1. 从理论上非等温法的结果与等温法的结果能保持一致。由于等温从理论上非等温法的结果与等温法的结果能保持一致。由于等温反应动力学至少在方法论上比较成熟,其结果的可靠性更高。非等反应动力学至少在方法论上比较成熟,其结果的可靠性更高。非等温法的结果常常拿来与等温法的结果进行比较,来证明非等温法结温法的结果常常拿来与等温法的结果进行比较,来证明非等温法结果的
18、可靠性。大量的事实表明,在很多反应体系中这两种结果很难果的可靠性。大量的事实表明,在很多反应体系中这两种结果很难保持一致。保持一致。2. 非均相反应实际上包含多个基元反应平行、连续进行。其转化百非均相反应实际上包含多个基元反应平行、连续进行。其转化百分率是多个基元反应综合的结果,需要对非均相反应的复杂本质进分率是多个基元反应综合的结果,需要对非均相反应的复杂本质进行进一步认识。行进一步认识。 非等温法研究动力学过程的局限性非等温法研究动力学过程的局限性 3. 采用采用Arhenius公式描述热分解反应速率常数与热力学温度公式描述热分解反应速率常数与热力学温度T关系时,关系时,首先遇到的问题是首
19、先遇到的问题是Arhenius公式能否适用于非等温非均相体系,寻公式能否适用于非等温非均相体系,寻找更合适的关系式一直是关注的焦点。其次是怎样解释找更合适的关系式一直是关注的焦点。其次是怎样解释Arhenius公公式中两个参数指前因子式中两个参数指前因子A和活化能和活化能E的物理含义,求算得到的活化能的物理含义,求算得到的活化能E的数值随转化率发生变化也是一个不容回避的事实。的数值随转化率发生变化也是一个不容回避的事实。 非等温法研究动力学过程的局限性非等温法研究动力学过程的局限性 4. 尽管提出了许多动力学模型函数来描述非均相反应的动力学过程,尽管提出了许多动力学模型函数来描述非均相反应的动
20、力学过程,但是非均相反应本身非常复杂,样品的几何形状的非规整性及反应但是非均相反应本身非常复杂,样品的几何形状的非规整性及反应的理化性质的多变性常常导致实际动力学过程与理想过程推导出来的理化性质的多变性常常导致实际动力学过程与理想过程推导出来的机理不相符合。另外,推导出来的动力学模型函数如此之多,在的机理不相符合。另外,推导出来的动力学模型函数如此之多,在应用这些模型时往往难以入手。如何用尽可能精炼的动力学模型函应用这些模型时往往难以入手。如何用尽可能精炼的动力学模型函数来描述多变的实际动力学过程也不容忽视。数来描述多变的实际动力学过程也不容忽视。等温法等温法为了得到物质有关热现象的动力学数据
21、,样品在指定条件下恒温受热,为了得到物质有关热现象的动力学数据,样品在指定条件下恒温受热,获得转化百分率获得转化百分率a对时间对时间t的曲线,然后根据等温法的动力学方程的曲线,然后根据等温法的动力学方程 0expdtGAE RTtkt在在a-t曲线上选取一组带入可能的动力学模型函数曲线上选取一组带入可能的动力学模型函数G(a)式中,如果式中,如果G(a)-t图为一直线,斜率为图为一直线,斜率为k,选取线性相关系数最大的,选取线性相关系数最大的G(a)为最可能为最可能的机理函数。的机理函数。 采用同样步骤在不同温度下一系列获得转化百分率采用同样步骤在不同温度下一系列获得转化百分率a对时间对时间t
22、的曲线,的曲线,从而求算得到一组从而求算得到一组k值。值。由式由式 lnk= -E/RT + lnA 可知,作可知,作lnA-1/T图得到一条直线,由斜率和图得到一条直线,由斜率和截距可分别得到指前因子截距可分别得到指前因子A和活化能和活化能E的数值。的数值。单升温速率法单升温速率法(非等温法非等温法) 单升温速率法是通过在一个升温速率下,对反应测定得到的一条热分单升温速率法是通过在一个升温速率下,对反应测定得到的一条热分析曲线上的数据进行动力学分析的方法。将实验得到的析曲线上的数据进行动力学分析的方法。将实验得到的da/dT-T数据数据或或a-T数据分别引入微分式或积分,尝试将所有可能的动力
23、学模型函数据分别引入微分式或积分,尝试将所有可能的动力学模型函数数f(a)或或G(a)分别带入两式,通过移项两边取对数将方程线性化,当分别带入两式,通过移项两边取对数将方程线性化,当温度积分采用温度积分采用MKN近似公式时,得到近似公式时,得到 ln1ddlnfTAE RT 1.921503ln/ln3.772050 1.921503ln1.921503GTAEREE RT 从回归直线的斜率和截距可以求算动力学参数(指前因子从回归直线的斜率和截距可以求算动力学参数(指前因子A和活化和活化能能E),并根据线性相关性的好坏来判定反应最可能遵循的动力学),并根据线性相关性的好坏来判定反应最可能遵循的
24、动力学模型模型f(a)或或G(a)。 单升温速率法单升温速率法(非等温法非等温法) 通常根据所选方程是源于微分式还是源于积分式将单升温速率法分为通常根据所选方程是源于微分式还是源于积分式将单升温速率法分为微分法和积分法两大类。微分法和积分法两大类。两类方法各有利弊:两类方法各有利弊:微分法不涉及难解的温度积分,形式简单,但要用到精确的转化率对微分法不涉及难解的温度积分,形式简单,但要用到精确的转化率对反应时间或温度的一阶微商数据;反应时间或温度的一阶微商数据;积分法可以直接用转化率对反应时间或温度的数据,但不能回避温度积分法可以直接用转化率对反应时间或温度的数据,但不能回避温度积分问题及由此产
25、生的近似方法的误差。积分问题及由此产生的近似方法的误差。 单升温速率法局限单升温速率法局限 在单升温速率法中,由于在单升温速率法中,由于k(T)和和f(a)或或G(a)不能分离,因此在求算动不能分离,因此在求算动力学参数时只能同时得到动力学三因子。力学参数时只能同时得到动力学三因子。这样产生的后果是:良好的线性关系不能保证所选机理模型函数的合这样产生的后果是:良好的线性关系不能保证所选机理模型函数的合理性,往往一组实验数据有多个机理模型函数与之相匹配。理性,往往一组实验数据有多个机理模型函数与之相匹配。在实际操作过程中为了选择合理的机理模型函数,常常采用多种方法在实际操作过程中为了选择合理的机
26、理模型函数,常常采用多种方法并用,如非等温法与等温法相结合,微分法与积分法相结合等。并用,如非等温法与等温法相结合,微分法与积分法相结合等。由于这一方法的科学性正在遭到怀疑,近年来由于这一方法的科学性正在遭到怀疑,近年来ICTAC已不再推荐用已不再推荐用单升温速率法来进行动力学分析。单升温速率法来进行动力学分析。多升温速率法(等转化率法)多升温速率法(等转化率法)多升温速率法是指用不同升温速率所测得的几条热分析曲线来进行动多升温速率法是指用不同升温速率所测得的几条热分析曲线来进行动力学分析的一类方法。力学分析的一类方法。由于大多数多升温速率法常用到几条热分析曲线上同一转化率由于大多数多升温速率
27、法常用到几条热分析曲线上同一转化率a处的处的数据进行动力学处理,所以多升温速率法常常叫做等转化率法。数据进行动力学处理,所以多升温速率法常常叫做等转化率法。这类方法的特点是能将这类方法的特点是能将k(T)和和f(a)或或G(a)分离,在相同转化率分离,在相同转化率a下下f(a)或或G(a)的值不随升温速率的不同发生改变,从而在不引入动力学模型的值不随升温速率的不同发生改变,从而在不引入动力学模型函数的前提条件下得到比较可靠的动力学参数活化能函数的前提条件下得到比较可靠的动力学参数活化能E的数值,因此的数值,因此多升温速率法又称为多升温速率法又称为“Model-free Method”。采用多升
28、温速率法得到的活化能采用多升温速率法得到的活化能E的数值常常用来验证单升温速率法的数值常常用来验证单升温速率法结果的可靠性。结果的可靠性。 Friedman法法 在在TA曲线上截取不同升温速率曲线上截取不同升温速率b下相同转化率下相同转化率a时时da/dt-T的值,由的值,由ln(da/dT)b对对1/T作图,用最小二乘法进行线性回归,由斜率可求得作图,用最小二乘法进行线性回归,由斜率可求得在该转化率在该转化率a时活化能时活化能E的数值。的数值。 lnddlnTAfE RTKissinger法法 当认为当认为f(ap)与与 无关,对于所有的动力学模型函数,其值近似等于无关,对于所有的动力学模型
29、函数,其值近似等于1,因此在不同升温速率因此在不同升温速率 下由对作图,可得一条直线,由直线斜率和截下由对作图,可得一条直线,由直线斜率和截距可分别求算得到活化能距可分别求算得到活化能E和指前因子和指前因子A的数值。的数值。 2ppplnlnTAR E fE RT Flynn-Wall-Ozawa (FWO)法法在在TA曲线上截取不同升温速率曲线上截取不同升温速率 下相同转化率下相同转化率a时时T的值,由的值,由ln 对对1/T作图,用最小二乘法进行线性回归,由斜率可求得在该转化率作图,用最小二乘法进行线性回归,由斜率可求得在该转化率a时活时活化能化能E的数值。的数值。 把温度积分的把温度积分
30、的Doyle近似式代入,得近似式代入,得 lnln5.3308 1.0516AE RGE RTKAS法法在在TA曲线上截取不同升温速率曲线上截取不同升温速率 下相同转化率下相同转化率a时时T的值,由的值,由ln /T2对对1/T作图,用最小二乘法进行线性回归,由斜率可求得在该转化率作图,用最小二乘法进行线性回归,由斜率可求得在该转化率a时活化能时活化能E的数值。的数值。 把温度积分的把温度积分的C-R近似式代入,得近似式代入,得 2lnlnTAR EGE RT 温度积分近似式温度积分近似式 温度积分概念的引入温度积分概念的引入 在绝大多数热分析实验过程中,反应体系按照程序线性升高温度。在绝大多
31、数热分析实验过程中,反应体系按照程序线性升高温度。同样,和微分法相比,积分法处理线性升温过程的动力学数据更有同样,和微分法相比,积分法处理线性升温过程的动力学数据更有优势。因此,积分法在现代热分析动力学的研究上得到了广泛的应优势。因此,积分法在现代热分析动力学的研究上得到了广泛的应用。然而,积分法不可避免地面临用。然而,积分法不可避免地面临“温度积分温度积分”这一难题。这一难题。温度积分,又叫温度积分,又叫Arrhenius积分,在热分析动力学发展的历史上起积分,在热分析动力学发展的历史上起着极其重要的作用。着极其重要的作用。积分法克服了微分法的一些缺点,但温度积分又引发新的问题,其积分法克服
32、了微分法的一些缺点,但温度积分又引发新的问题,其来源于不能用一个简单的有限的表达式来精确逼近温度积分。来源于不能用一个简单的有限的表达式来精确逼近温度积分。 温度积分概念的引入温度积分概念的引入 000expdexpd TTTGAE RTTAE RTTAER P u式中,积分下限式中,积分下限T0的积分值趋近于的积分值趋近于0,积分下限可由,积分下限可由0代替。代替。P(u)称称为温度积分(为温度积分(Temperature Integral),其形式如下),其形式如下 2duuP ueuu式中式中 u = E/RT由于由于P(u)在数学上得不到有限的精确解,常常由一个近似公式代替。在数学上得
33、不到有限的精确解,常常由一个近似公式代替。直接将直接将a-T数据引入上式,同样可以进行动力学处理。数据引入上式,同样可以进行动力学处理。推导温度积分近似公式推导温度积分近似公式 推导方法有三类:推导方法有三类:(1)级数展开公式;)级数展开公式;(2)复杂的近似公式;)复杂的近似公式;(3)简单的近似公式。)简单的近似公式。温度积分被转化为各种近似的有理函数或有限级数,统称为温度积温度积分被转化为各种近似的有理函数或有限级数,统称为温度积分近似公式。分近似公式。 温度积分的分步积分表达式温度积分的分步积分表达式 22222323234d A 1dd2d B 2d26uuuuuuuuuuuuuu
34、uuuuP ueuuueeueueueuueuueeueueu 23423442345234552d C 26d 266d 2624d 262424d2!3! 1uuuuuuuuuuuuuuuuuuuuuuuueueuueeueueueueueueuueeueueueueueuu 234! Duu常用的温度积分近似公式常用的温度积分近似公式 1Coats-Redfern近似近似 截取温度积分的分步积分表达式(式截取温度积分的分步积分表达式(式D)括号内的第一项和第)括号内的第一项和第二项,而忽略其它项,并带入表达式二项,而忽略其它项,并带入表达式uE/RT,得到温度积分的,得到温度积分的Coa
35、ts-Redfern近似公式:近似公式: 20d1 2TE RTE RTRTeTRT E eECoats-Redfern方程是较早推导出来著名近似公式之一,一直被广方程是较早推导出来著名近似公式之一,一直被广泛应用。泛应用。Coats-Redfern方程通常被进一步简化,通过忽略方程通常被进一步简化,通过忽略2E/RT项而得到所谓的修正的项而得到所谓的修正的Coats-Redfern方程:方程: Coats-Redfern方程方程Coats-Redfern方程是较早推导出来著名近似公式之一,一直被广方程是较早推导出来著名近似公式之一,一直被广泛应用。泛应用。Coats-Redfern方程通常被
36、进一步简化,通过忽略方程通常被进一步简化,通过忽略2E/RT项而得到所谓的修正的项而得到所谓的修正的Coats-Redfern方程:方程: 20dTE RTE RTRTeTeE由于易于实现动力学方程的线性化,这个方程也得到了广泛应用,由于易于实现动力学方程的线性化,这个方程也得到了广泛应用,特别是应用在特别是应用在KAS等转化率法中。这个方程的精度是相当不够的,等转化率法中。这个方程的精度是相当不够的,因此必须慎重应用。因此必须慎重应用。 Doyle方程方程取温度积分的分步积分表达式(式取温度积分的分步积分表达式(式D)括号内的第一项和第二项,)括号内的第一项和第二项,而忽略其它项,并考虑到而
37、忽略其它项,并考虑到u的取值区间范围的取值区间范围20u60,经过适当的,经过适当的数学处理及近似,得到温度积分的数学处理及近似,得到温度积分的Doyle近似式:近似式: Doyle方程也是较早推导出来著名近似公式之一,并且非常容易实方程也是较早推导出来著名近似公式之一,并且非常容易实现动力学方程的线性化,因此得到广泛应用。现动力学方程的线性化,因此得到广泛应用。 1.05160.00484uP ueDoyle方程方程Doyle近似公式在整个近似公式在整个u的取值区间范围内精确度不高。的取值区间范围内精确度不高。Gao等为等为了进一步提高精度,把了进一步提高精度,把u的取值区间范围的取值区间范
38、围10u70以间隔为以间隔为u5分解成若干个小的范围,每个小的范围经过各自数学处理及近似,分解成若干个小的范围,每个小的范围经过各自数学处理及近似,得到温度积分在每一小段得到温度积分在每一小段u的取值区间的的取值区间的Doyle近似公式,从而大近似公式,从而大大提高大提高Doyle近似公式在整个近似公式在整个u的取值区间范围的精确度。的取值区间范围的精确度。 Starink方程方程Starink仔细研究了仔细研究了Doyle公式的形式,提出用一个通式可以代表这公式的形式,提出用一个通式可以代表这样一类近似公式,即样一类近似公式,即 expkP uAuBu式中,式中,A、B和和k为常量。经过在为
39、常量。经过在u的取值区间范围的取值区间范围20u60计算,计算,指出指出A1时,时,k1.95,B0.235,温度积分近似公式的精度最,温度积分近似公式的精度最高。高。在最近的工作中,在最近的工作中,Starink 认为如果认为如果A的值不等于的值不等于1,将会得到更高,将会得到更高精度的温度积分近似公式,其中精度的温度积分近似公式,其中A1.0008,k1.92,B0.312。 Gorbachev-Lee-Beck方程方程式中的方程式中的方程A和和B移项并化简得到移项并化简得到 2212duuueeuuuu考虑到考虑到u的取值区间范围的取值区间范围20u60,(12/u)的值趋近于的值趋近于
40、1,可以认为是一个,可以认为是一个常量,因此可将(常量,因此可将(12/u)移出积分)移出积分号外,从而得到号外,从而得到Gorbachev-Lee-Beck近似公式近似公式 : 2221 (A)121 2 (B)1 4uueP uuueuuu带入表达式带入表达式uE/RT,得到,得到 20d2TE RTE RTRTeTeERTLi Chung-Hsung方程方程采用完全相同的步骤,式中的方程(采用完全相同的步骤,式中的方程(A)和()和(C)移项并化简得到)移项并化简得到 同样考虑到同样考虑到u的取值区间范围的取值区间范围20u60,(,(16/u2)的值趋近于)的值趋近于1,并认为是一个常
41、量,因此可将(并认为是一个常量,因此可将(16/u2)移出积分号外,从而得)移出积分号外,从而得到到Li Chung-Hsung近似公式近似公式: 2221 6d1 2uuueeuuuuu 221 21 6ueuP uuuAgrawal和冉全印叶素方程和冉全印叶素方程为了进一步提高温度积分近似式的精度,为了进一步提高温度积分近似式的精度,Agrawal,冉全印等经过,冉全印等经过研究研究Gorbachev-Lee-Beck近似公式和近似公式和Li Chung-Hsung近似式的形式近似式的形式以及它们分别与温度积分数值解的偏差与以及它们分别与温度积分数值解的偏差与u的关系,发现通过调节的关系,
42、发现通过调节式右端分母中式右端分母中u2的系数,可以大大提高温度积分近似式的精度。的系数,可以大大提高温度积分近似式的精度。 221 21 5ueuP uuu 221 21 4.6ueuP uuu 221 21 5.2ueuP uuuSenum-Yang方程方程在数学分析中在数学分析中函数定义为函数定义为 10d , 0t xxe ttx由由函数定义可知,温度积分可表示为补余不完全函数定义可知,温度积分可表示为补余不完全函数函数 1,uP u (-1,u)函数可以用连分数表示式进行计算,温度积分可用连分数表函数可以用连分数表示式进行计算,温度积分可用连分数表示式展开为示式展开为 1211321
43、41ueP uuuuuSenum-Yang方程方程对上述连分数的分母截取到第一级、第二级、第三级和第四级,则对上述连分数的分母截取到第一级、第二级、第三级和第四级,则分别得到分别得到Senum-Yang的一级、二级、三级和四级有理近似表达式。的一级、二级、三级和四级有理近似表达式。对连分数的分母截取的级数越高,可以得到更高级数的有理近似表对连分数的分母截取的级数越高,可以得到更高级数的有理近似表达式。常见的温度积分达式。常见的温度积分Senum-Yang第四级有理近似表达式如下第四级有理近似表达式如下 3243218869620120240120ueuuuP uu uuuu(-1,u)函数的分
44、母截取的级数越高,温度积分的展开近似表达式就函数的分母截取的级数越高,温度积分的展开近似表达式就越复杂,所得到的近似表达式的精确度越大。越复杂,所得到的近似表达式的精确度越大。 Madhusudanan-Krishnan-Ninan方程方程Madhusudanan等通过对温度积分展开式取二级近似,得到等通过对温度积分展开式取二级近似,得到 后来又通过对温度积分的展开式取三级近似和系列近似,采用与推导后来又通过对温度积分的展开式取三级近似和系列近似,采用与推导上式完全相同的方法推导出来的上式完全相同的方法推导出来的MKN近似表达式近似表达式和和。由于。由于MKN近似表达式的对数形式中,变量活化能
45、近似表达式的对数形式中,变量活化能E和温度和温度T 通过取对数而分离,通过取对数而分离,非常容易实现热分析动力学方程的线性化,给动力学处理带来极大的非常容易实现热分析动力学方程的线性化,给动力学处理带来极大的方便,方便, 213ueuP uuu并由该公式出发,采用数学方法与数值计算相结合推导出了温度积并由该公式出发,采用数学方法与数值计算相结合推导出了温度积分的分的MKN近似表达式近似表达式。MKN近似表达式近似表达式的对数形式为的对数形式为 ln( )0.297580 1.921503ln1.000953P uuu评价温度积分评价温度积分P(u)的标准的标准 (1) 由于发表时间的限制,文献
46、中的陈旧数据不是经过计算机计算由于发表时间的限制,文献中的陈旧数据不是经过计算机计算出来的,这意味着这些数据含有错误。新的出来的,这意味着这些数据含有错误。新的P(u)必须是计算机计算的必须是计算机计算的结果。结果。(2) 文献的文献的P(u)数据表包含活化能变量。新的数据表包含活化能变量。新的P(u)数据表必须直接数据表必须直接计算并展示结果。计算并展示结果。(3) 不同的文献的不同的文献的P(u)数据表数据表u的取值范围变动很大。新给出的的取值范围变动很大。新给出的P(u) 数据表的使用范围最好在数据表的使用范围最好在0.5u100。(4) Doyle文献中文献中P(u)数据表的有效数字为
47、数据表的有效数字为4个,个,Zsako 给出的数据给出的数据的有效数字为的有效数字为5个。新的个。新的P(u) 数据表的有效数字必须为数据表的有效数字必须为8-10个。个。(5)必须在计算机中计算)必须在计算机中计算P(u)数据,在保证计算精度的前提下计算数据,在保证计算精度的前提下计算程序运行必须足够快。程序运行必须足够快。(6)计算的方法必须保证在整个)计算的方法必须保证在整个u的取值范围有足够的精度。的取值范围有足够的精度。 温度积分近似表达式温度积分近似表达式的导出的导出 在求算动力学参数时,常常采用最小二乘法和迭代法来进行热分析在求算动力学参数时,常常采用最小二乘法和迭代法来进行热分
48、析数据处理。采用形式过于复杂的温度积分近似表达式,必然增加计数据处理。采用形式过于复杂的温度积分近似表达式,必然增加计算的难度,占用大量的浮点计算时间,降低程序运行的效率。算的难度,占用大量的浮点计算时间,降低程序运行的效率。如果考虑到测量误差,也完全没有必要过分追求计算精度。在迭代如果考虑到测量误差,也完全没有必要过分追求计算精度。在迭代计算中,精度越高,迭代越容易出现发散现象。实际上,文献上采计算中,精度越高,迭代越容易出现发散现象。实际上,文献上采用更多的温度积分近似表达式是用更多的温度积分近似表达式是Coats-Redfern近似公式和近似公式和Doyle近似近似公式。然而这两式的精确
49、度比较低,导致得到的动力学参数的结果公式。然而这两式的精确度比较低,导致得到的动力学参数的结果不可靠。不可靠。温度积分近似表达式温度积分近似表达式的导出的导出 目的目的:推导出一种简单可靠(可与推导出一种简单可靠(可与Coats-Redfern近似式和近似式和Doyle近似近似式相比)、精度高(可与一些较复杂的式相比)、精度高(可与一些较复杂的Agrawal近似式等相比)的近似式等相比)的温度积分近似表达式。温度积分近似表达式。另外,在固态反应中,另外,在固态反应中,uE/RT10通常毫无意义,因此也没有刻通常毫无意义,因此也没有刻意追求在非常低的意追求在非常低的u的取值区间赋予新的温度积分近
50、似表达式以特的取值区间赋予新的温度积分近似表达式以特别高的精度。别高的精度。 温度积分近似表达式温度积分近似表达式的导出的导出 通过考察通过考察Gorbachev-Lee-Beck方程的推导过程,发现在方程的推导过程,发现在u的取值区的取值区间范围间范围20u60,(,(12/u)趋近于)趋近于1,但并不能认为是一个常量,但并不能认为是一个常量,如果简单地将(如果简单地将(12/u)移出式)移出式2.5的积分号外,必然会引入误差。的积分号外,必然会引入误差。为了减少误差,必须对项(为了减少误差,必须对项(12/u)的移出方法进行改进。)的移出方法进行改进。对温度积分采取分步积分展开有对温度积分
51、采取分步积分展开有 2002TTE RTE RTE RTRTRTedTeedTEE移项得移项得 201 2TE RTE RTRTRT E edTeE温度积分近似表达式温度积分近似表达式的导出的导出 令令u = E /R,x =1/u,则,则 121012dxxxx exx e两端同时除以两端同时除以 则则 10 xxedx1210110012xxxxxxxx ed xx eed xed x令令 1010 xxxxxedxedxkx温度积分近似表达式温度积分近似表达式的导出的导出 则上式重排得到则上式重排得到211012xxxx eedxkx绝大多数热分解反应发生在区间绝大多数热分解反应发生在区
52、间15 u 55,也就是也就是, 1/55 x 1/15。在这个范围内以在这个范围内以u步长为步长为1,采用,采用Simpson积分法分别计算各个积分法分别计算各个u所所对应的对应的 和和 的值。得到的的值。得到的k(x)-x关系见图关系见图 10 xxedx10 xxxedx温度积分近似表达式温度积分近似表达式的导出的导出 k(x)-x数据的线性关系数据的线性关系 温度积分近似表达式温度积分近似表达式的导出的导出 从图可知,从图可知, k(x)-x关系具有良好的线性关系,进行线性回归,线性关系具有良好的线性关系,进行线性回归,线性相关系数为相关系数为0.99995584,斜率和截距分别为,斜
53、率和截距分别为0.93695599和和0.000999441,即,即 ( )0.000994410.93695599k xx把上式引入,并带入表达式,化简得到温度积分近似表达式把上式引入,并带入表达式,化简得到温度积分近似表达式 211.00198882 1.87391198ueP uuu带入表达式带入表达式uE/RT,得到,得到 201.001988821.87391198EETRTRTRTedTeERT表达式表达式精确度的评估精确度的评估 u的取值与温度积分近似公式的百分偏差的关系的取值与温度积分近似公式的百分偏差的关系 温度积分近似表达式温度积分近似表达式的导出的导出 在热分析动力学数据
54、处理过程中,使用最小二乘法进行非线性拟合在热分析动力学数据处理过程中,使用最小二乘法进行非线性拟合算法以及反覆采用迭代算法是万不得已的步骤,直接将动力学方程算法以及反覆采用迭代算法是万不得已的步骤,直接将动力学方程线性化,然后采用线性最小二乘法求算动力学参数往往是首选。线性化,然后采用线性最小二乘法求算动力学参数往往是首选。和前面提及的修正的和前面提及的修正的Coats-Redfern近似式和近似式和Doyle近似式一样,近似式一样,MKN近似表达式的对数形式中,变量活化能近似表达式的对数形式中,变量活化能E和温度和温度T 通过取对数通过取对数而分离,可以直接采用线性最小二乘法求算活化能而分离
55、,可以直接采用线性最小二乘法求算活化能E和指前因子和指前因子A,从而避免反覆使用迭代法,这样动力学处理过程将非常简单和方便。从而避免反覆使用迭代法,这样动力学处理过程将非常简单和方便。和前面提及的修正的和前面提及的修正的Coats-Redfern近似式和近似式和Doyle近似式一样,近似式一样,MKN公式是形式最简单、使用频率最高的温度积分近似公式之一。公式是形式最简单、使用频率最高的温度积分近似公式之一。温度积分近似表达式温度积分近似表达式的导出的导出 已有文献评估了已有文献评估了Coats-Redfern近似式和近似式和Doyle近似式的精确度,然而,近似式的精确度,然而,除了原始文献外,
56、并没有其它文献对除了原始文献外,并没有其它文献对MKN公式的精确度进行过评估。公式的精确度进行过评估。我们仔细参阅了推导我们仔细参阅了推导MKN公式的原始文献,公式的原始文献,MKN公式是从温度积分公式是从温度积分的近似数值解推导出来的,但是数值解不是直接来源于最原始的温度的近似数值解推导出来的,但是数值解不是直接来源于最原始的温度积分公式,而是从温度积分的有限近似公式计算得到的。积分公式,而是从温度积分的有限近似公式计算得到的。从纯数学的角度上讲从纯数学的角度上讲MKN公式的数值推导过程并不十分严格。公式的数值推导过程并不十分严格。综上所述,我们认为有必要对综上所述,我们认为有必要对MKN公
57、式的精确度进行重新评估,从公式的精确度进行重新评估,从而找到可靠性更高,精确度更高的温度积分近似表达式。而找到可靠性更高,精确度更高的温度积分近似表达式。温度积分近似表达式温度积分近似表达式的导出的导出 首先假定温度积分可以展开成如下形式:首先假定温度积分可以展开成如下形式: ln( )lnP uabucu式中,式中,a、b、c分别为常数。上式两端同时微分得分别为常数。上式两端同时微分得 ln( )P uubc u 以以dlnP(u)/du-1/u作图将得到一条直线,截距为作图将得到一条直线,截距为b,斜率为,斜率为c。上式插。上式插入斜率入斜率c的值得到的值得到 ln( )lnP ucuab
58、u以以(lnP(u)clnu)-1/u作图将得到一条直线,截距为作图将得到一条直线,截距为a,斜率为,斜率为b。由。由直线的斜率得到的直线的斜率得到的b的数值从理论上应等于由直线的截距的数值从理论上应等于由直线的截距b的数值。的数值。 温度积分近似表达式温度积分近似表达式的导出的导出 绝大多数热分解反应发生在区间范围内,以绝大多数热分解反应发生在区间范围内,以u步长为步长为1,采用,采用Simpson数值积分法分别计算各个数值积分法分别计算各个u所对应所对应P(u)的数值,然后再对的数值,然后再对(lnP(u)u)进进行数值微分。行数值微分。dln P(u)/du-1/u作图及回归直线见图。回
59、归直线的截距作图及回归直线见图。回归直线的截距b =1.00140637,斜率,斜率c =1.89466100,线性回归的相关系数为,线性回归的相关系数为0.99997662。把求得的把求得的c的值带入式的值带入式2.24,(ln P(u)clnu)-1/u作图及回归直线见图。作图及回归直线见图。回归直线的截距回归直线的截距a =0.37773896,斜率,斜率b =1.00145033,线性回归的,线性回归的相关系数为相关系数为1.00000000。温度积分近似表达式温度积分近似表达式的导出的导出 dln P(u)/du-1/u关系及回归直线关系及回归直线 温度积分近似表达式温度积分近似表达
60、式的导出的导出 (ln P(u)clnu)-1/u关系及回归直线关系及回归直线 表达式表达式精确度的评估精确度的评估 u的取值与温度积分近似公式的百分偏差的关系的取值与温度积分近似公式的百分偏差的关系 热重法研究反应的类型热重法研究反应的类型1、分解反应、分解反应 A(固固) B(固固) + C(气气)2、固、固-固相反应固相反应 A(固固) + B(固固) C(固固) + D(气气)3、固、固-气相反应气相反应 A(固固) + B(气气) C(固固)4、固体或液体物质转变成气体的反应、固体或液体物质转变成气体的反应 A(固或液固或液) B(气气)等温法与非等温法等温法与非等温法热重法测定反应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年数控机床精度校准服务企业制定与实施新质生产力战略研究报告
- 2025-2030年手术显微镜宽视野设计行业跨境出海战略研究报告
- 2025-2030年噪声与振动控制技术培训服务行业跨境出海战略研究报告
- 2025-2030年地面保温隔热板材行业深度调研及发展战略咨询报告
- 2025-2030年口袋式记忆宫殿训练器企业制定与实施新质生产力战略研究报告
- 高新技术产品贸易销售合同
- 智能物流仓储系统服务协议
- 零星物资采购合同
- 环保设备维护合同
- 文化旅游项目投资与开发合同
- Starter Unit 1 Hello!说课稿2024-2025学年人教版英语七年级上册
- 2025年初中语文:春晚观后感三篇
- Unit 7 第3课时 Section A (Grammar Focus -4c)(导学案)-【上好课】2022-2023学年八年级英语下册同步备课系列(人教新目标Go For It!)
- 《教育强国建设规划纲要(2024-2035年)》解读讲座
- 《基于新课程标准的初中数学课堂教学评价研究》
- 省级产业园区基础设施项目可行性研究报告
- 2025年中国东方航空招聘笔试参考题库含答案解析
- 预算绩效评价管理机构入围投标文件(技术方案)
- 园艺产品的品质讲义
- 钢筋混凝土框架结构工程监理的质量控制
- 桃花节活动方案
评论
0/150
提交评论