




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Understanding DSP, Second Edition1Chapter 3:z-TransformUnderstanding DSP, Second Edition2DSP2Contents3.1 The z-Transform3.1.1 Poles and Zeros on the z-Plane and Stability3.1.2 The ROC of z-Transform3.1.3 The Properties of z-Transform3.2 The Inverse z-Transform3.2.1 General Expression of Inverse z-Tr
2、ansform3.2.2 Inverse z-Transform by Partial-Fraction ExpansionUnderstanding DSP, Second Edition33Z TransformZT of the sequence x(n) is defined as:Z, complex variableInverse ZT:Understanding DSP, Second EditionZ TransformExample Determine the z-transform for . with constant . Solution:If , then the a
3、bove summation converges. Thus,)(nx)()(nunxn01)()()()(nnnnnnnzznuznxzX1|1z| | 11)()(101z,zzzzzXnnUnderstanding DSP, Second Edition55Z TransformWe have to ask if X(z) converge?For any x(n), the region of converge (ROC) of ZT is the set of values of the complex variable z for which the z-transform uni
4、formly converges.i.e.: z: X(z) existsDifferent x(n) with different ROC may have the same ZT.So, the ROC of each X(z) should be defined.Understanding DSP, Second Edition Consider thatIfthen is exist. In other words, if the series is absolutely convergent, then it uniformly converges to an analytical
5、function in its ROC. Such a condition is sufficient and necessary for the z-transform of a sequence to exist.)(nx01)()()()(nnnnnnznxznxznxzX0 1)()( )()( | )(nnnnnnnn|znx|znx|znx|znx|zX|)(zXUnderstanding DSP, Second Edition The convergence condition for the z-transform is as follows: (1)If the limit
6、of the nth root of the absolute value of the nth term in the following summationsatisfiesor equivalently,)(nx0 1)()()( | )(nnnnnn|znx|znx|znx|zX|0|)(|nnznx1| )(lim1|)(lim11n/nn/nnnx|z|znx|1/1| )(|lim |rnxznnROC for the z-transform of a General SequenceIf the z-transform of a sequence is exist, thenU
7、nderstanding DSP, Second Editionthen the seriesuniformly converges. (2) ConsideringIfor equivalently,then the series 0)(nnznx11)()(nnnn|znx|znx|1| )(lim|)(lim11n/nn/nnnx|z|znx|2/1| )(|lim/1|rnxznn1)(nn|znx| uniformly converges.Understanding DSP, Second Edition (3) Combining the above results, we see
8、 thatIts ROC is shown in the following Figure:)(nx2101 | r :ROC ,)()( )()(rzznxznxznxzXnnnnnnUnderstanding DSP, Second Edition1010Z Transform: Pole-zero PlotROC:ROC is determined by |z|=r, in terms of the theory of complex variable function, it can be a circular band: r1|z|r2In the ROC, X(z) is an a
9、nalytic function, and the pole of X(z) is out of ROC, with the pole as the edge.r1 can be zero, r2 can be .If r2r1,it means ROC is not exist, neither the ZT.Understanding DSP, Second Edition1111Z Transform: Pole-zero PlotSystem has ZT as:Understanding DSP, Second Edition12Z Transformcausal sequence
10、:When nr1, outside of radius r1.12Understanding DSP, Second Edition13Z TransformExample 1:Determine the ZT of x(n):13)()(1nuanxnUnderstanding DSP, Second Edition14Z TransformSolution:14The PoleUnderstanding DSP, Second Edition15Z Transformanticausal Sequence:When n 0, x(n)=0;X(z) only contains the p
11、ositive indexes of z.The ROC: |z|r2, inside of radius r2.15Understanding DSP, Second Edition16Z TransformExample 2:Determine the ZT of x1(n):16Understanding DSP, Second Edition17Z TransformSolution:17The PoleUnderstanding DSP, Second Edition18Z TransformAbout these two examples, if b=a:But:18=Unders
12、tanding DSP, Second Edition19Z TransformIf b=a:X1(z) has the same form with X(z), except for the ROC.That implies that the ROC insures only one ZT of x(n).Different ROC means different ZT.ROC plays an important role in system analysis.19Understanding DSP, Second Edition20Z TransformTwo-side Sequence
13、:Contains right-side sequence and left-side sequence.So the ROC is defined as: r1|z|r2 or not exist if r2|a|, where a is the pole.(3) anticausal Sequence (n0): the ROC is |z|b|, where b is the pole.23Understanding DSP, Second EditionQuestions:1.Finite-length Sequences12 )()(21nn,znxzXnnnn2. Right-Si
14、ded Sequences1)()(nnnznxzX3. Left-Sided Sequences2)()(nnnznxzXROC forUnderstanding DSP, Second Edition The z-Transform of Basic Sequences (1) The Unit Sample Sequence (2) The Unit Step Sequence (3) The Anticausal Unit Step Sequence )(nx | 0 1)()(|z,znzXnn)()(nnx)()(nunx1 | 111)()()(101|z,zzzzznuzXnn
15、nn) 1()(nunx1 | 1)( )() 1()(11|z,zzzzznuzXnnnnnnUnderstanding DSP, Second EditionThe z-Transform of Basic Sequences (4) The Ramp Sequence Consideringand taking the derivative on two sides in this equation with respect to the variable , we getThis leads to )(nx)()(nnunx0)()(nnnnnzznnuzX1 | 1110|z,zzn
16、n1z1 | )(11)(210011|z,znzzznnnnn1 | ) 1()(1)(22110|z,zzzznzzXnnUnderstanding DSP, Second Edition27Common ZT PairsThe Table of common ZT pairs:27Understanding DSP, Second Edition|)1 () 1(|)1 ()(|)cos2(1)cos(1)(cos|)cos2(1)sin()(sin21121122101002210100bzbzbznunbazazaznunaazzazwazwanunwaazzazwazwanunwa
17、ROCTransformSequencennnnCommon ZT PairsUnderstanding DSP, Second Edition29The Properties of ZTLinear29ROC2 :ROC ),()(zYnyZROC1 :ROC ),()(zXnxZROC2ROC1 containing ROC with Understanding DSP, Second Edition. ) 1()()(nuanuanxnnExample: Find the z-transform for Solution: We letwhere)()()(21nxnxnx)()(1nu
18、anxn) 1()(2nuanxnandThe Properties of ZTUnderstanding DSP, Second EditionThenandBy the linearity property, we haveOn the other hand, we consider that)(nx| | :ROC1 )()(1az,azznuaZzXn| | :ROC2 )1()(2az,azanuaZzXn | 0 :ROC 1 )()()()(21z,azaazzzXzXnxZzX)() 1()()(nnuanuanxnnThe Properties of ZTUnderstand
19、ing DSP, Second Editionwhose z-transform is given by | 0 :ROC 1)()()(z,nZnxZzXThe Properties of ZTUnderstanding DSP, Second Edition2. Time shifting3. Frequency shifting (scaling in the z-domain)The Properties of ZTUnderstanding DSP, Second Edition4. Time Reversal IfthenHence, if the is then the ROC
20、of the is)(nxxzXnxZROC with ),()(x/zXnxZROC1 :ROC ),()(1xROCxxrzr | )(1zX. /1 | /1xxrzrThe Properties of ZTUnderstanding DSP, Second Edition35The Properties of ZT5. Differential6. Conjugation35Understanding DSP, Second Edition36The Properties of ZT7. Initial Value TheoremIf n0 and choose formula No.
21、1. Because X(z) have limited poles inside of C and zn-1 is analytic at z=0, but there are high order poles at z= for zn-1 when n is large.57Understanding DSP, Second Edition58Inverse ZT - General Expression of Inverse z-TransformNote:If the ROC is inside of a circle, usually we calculate x(n) at n0
22、and choose formula No.2. Because X(z) have limited poles outside of C and zn-1 is analytic at z=, but there are high order poles at z=0 for zn-1 when n is large. If the ROC is a ring, usually we use both of formula No.1 and No.2.58Understanding DSP, Second Edition59Inverse ZT - General Expression of
23、 Inverse z-TransformNote:Actually, n=0 is not the only edge for residue method. Now, we can reach one more general method:Extract X(z)=X0(z)zm, m is an integer. Therefore, X0(z) is analytic at both n=0 and n=. Then: X(z)zn-1 =X0(z)zmzn-1=X0(z)zn+m-1=X1(z)After determining the ROC of X(z) and C:We ca
24、n get x(n) at n1-m by calculate the residue of X1(z) inside of C and then get -x(n) at n 1Both of the two poles are inside of C, use formula No.1.When n1-m=0, x(n)=0. When n1-m=0: 63Understanding DSP, Second Edition64Inverse ZT - General Expression of Inverse z-TransformSolution:(2) If ROC: z 1/3Bot
25、h of the two poles are outside of C, use formula No.2.When n1-m=0, x(n)=0. When n1-m=0: 64Understanding DSP, Second Edition65Inverse ZT - General Expression of Inverse z-TransformSolution:(3) If ROC :1/3 z 1Pole z=1/3 is inside of C, use formula No.1. When n0:Pole z=1 is outside of C, use formula No
26、.2. When n0:65Understanding DSP, Second Edition66Inverse ZT - General Expression of Inverse z-TransformSolution:(3) If ROC: 1/3 z r1):For ROC (|z|r2):69Understanding DSP, Second Edition70Inverse ZT - Part fractional methodFor ROC (r1|z|1, x(n) is causal sequence.(2) For ROC |z|1/3, x(n) is anticausa
27、l sequence.73Understanding DSP, Second Edition74Inverse ZT - Part fractional methodSolution:X(z) has two poles, z1=1 and z2=1/3.(3) For ROC 1/3|z|1, the x(n) is Two-side sequence.74Understanding DSP, Second Edition Starts withwhere and are positive integers and, and are real constants. Case 1: If ,
28、thenwhere for are simple poles and is a repeated pole with order . If all poles are distinct, then the xxNNMMR|z|R,zazazazbzbzbbzX 1)(221122110NMibiakzLN,k ,2, 1MN pzLxxLkpkLNkkkNNNNMNMNNR|z|RzzzBzzzAazazazzbzbzbzzX , )()( )(1k111112110Inverse ZT - Part fractional methodUnderstanding DSP, Second Edi
29、tionsecond summation disappears and the first summation contains terms. The expansion coefficients: Comparatively, the inverse z-transform for the expanded expression is easy to be obtained. If all poles are simple, then NLN,k,zzXzzAkzzkk , 2, 1 | )()(L,k,zzXzzdzdkLBpzzLpkLkLk , 2, 1 | )()()!(1Nkkzz
30、zZAzXZnx1k11)()(Inverse ZT - Part fractional methodUnderstanding DSP, Second EditionWhereExample Using the partial fraction expansion, find the inverse z-transform for Solution:whereand. 1 | ),505111/()(21zz.z.zX1 | 0.5)(z1)(z0.5)1)(z(z)(212z,zAzAzzX20.5)(z)(1)(z1 1 1zz|z|zzXA11)(z)(0.5)(z50 50 2.z.
31、z|z|zzXAxknkxknkkRznuzRznuzzzzZ | ),1()( | ),()(1Inverse ZT - Part fractional methodUnderstanding DSP, Second EditionTherefore,Thus,Example Determine the sequence from Solution: 1 | 0.5)(z1)(z2)(z,zzzX)()50(2)()50()(2 )()(1nu.nu.nuzXZnxnn)(nx. 3 | 2 ),212020/()(211zz.z.zzX3 | 2 ,23)2)(3(5 65)(212zzz
32、AzzAzzzzzzzXInverse ZT - Part fractional methodUnderstanding DSP, Second EditionwhereandTherefore,Thus,12)(z5)(3)(z3 3 1zz|zzXA13)(z5)(2)(z2 2 2zz|zzXA3 | 2 ,23)(zzzzzzX)(2) 1()3()()(1nunuzXZnxnnInverse ZT - Part fractional methodUnderstanding DSP, Second Edition Case 2: If thenwhere may be determin
33、ed by performing the long division. The proper rational part is expanded using the partial fraction expansion, which is identical to that in case 1.Example Determine the sequence from Solution: Decompose the given function into, MN 1)(2211)1(1100NNNMNMkkkzazazazczcczCzXxxLkpkLNkkkNMkkkR|z|RzzzBzzzAzC , )()(1k10kC1 | ,)21 ()23(121)(2121zz/z/zzzXInverse ZT - Part fractional methodUnderstanding DSP, Second EditionIf we denote the proper r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营养改善计划管理制度
- 营销渠道风险管理
- 英语重点词汇agree解析
- 现代化工厂区生态环境综合管理合同
- 车辆挂靠经营与驾驶员培训服务合同
- 破旧围栏整治方案
- 公司外出乘车方案
- 餐饮行业绿色环保项目投资合同
- 儿童绘画比赛组织与管理合同
- 环境水质应急检测方案
- 声环境质量自动监测系统质量保证及质量控制技术规范
- 2023年阳江市阳东区教育局招聘事业编制教师考试真题
- 利用隐私保护技术实现网络爬虫安全抓取
- 2024年02月珠海市横琴粤澳深度合作区公安局2024年面向社会公开招考66名辅警笔试历年高频考点题库荟萃带答案解析
- 成本会计岗位竞聘稿
- 2024年新版消防设施操作员初级考试题库(含答案)
- 泡泡玛特营销案例分析
- 养老院安全生产培训
- 国开电大行政管理专科《政治学原理》期末考试总题库2024版
- 美容与整形外科学基础
- 加工机械安全培训内容记录
评论
0/150
提交评论