版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新课标人教版课件系列新课标人教版课件系列高中数学选修选修1-23.1.1数系的扩充与复数的概念教学目标教学目标 理解数系的扩充是与生活密切相关的,明白复数及其相关概念。 教学重点教学重点:复数及其相关概念,能区分虚数与纯虚数,明白各数系的关系。 教学难点教学难点:复数及其相关概念的理解 引言:在人和社会的发展过引言:在人和社会的发展过程中,常常需要立足今天,回顾程中,常常需要立足今天,回顾昨天,展望明天。符合客观发展昨天,展望明天。符合客观发展规律的要发扬和完善,不符合的规律的要发扬和完善,不符合的要否定和抛弃。那么,在实数集要否定和抛弃。那么,在实数集向复数集发展的过程中,我们应向复数集发展
2、的过程中,我们应该如何发扬和完善,否定和抛弃该如何发扬和完善,否定和抛弃呢?呢?自然数自然数整数整数有理数有理数实数实数?nzqr对于一元二次方程对于一元二次方程 没有实数根没有实数根012 x12 x12 ii (1); (2) i 形如形如a+bi(a,br)的数叫做复数的数叫做复数. 全体复数所形成的集合叫做全体复数所形成的集合叫做,一般用字母一般用字母 表示表示 .通常用字母通常用字母 表示,即表示,即 biaz ),(rbra 其中其中 称为称为虚数单位虚数单位。i000000bababb,非纯虚数,纯虚数虚数实数000000bababb,非纯虚数,纯虚数虚数实数cr 复数集,虚数集
3、,实数复数集,虚数集,实数集,纯虚数集之间的关集,纯虚数集之间的关系?系?思考?思考?复数集复数集虚数集虚数集实数集实数集纯虚数集72618. 0i725 +8,i 29331i2ii0 0immz)1(1 解解: (1)当当 ,即,即 时,复数时,复数z 是实数是实数01 m1 m(2)当当 ,即,即 时,复数时,复数z 是虚数是虚数01 m1 m(3)当当 0101mm即即 时,复数时,复数z 是是纯虚数纯虚数1 m练习练习: :当当m m为何实数时,复数为何实数时,复数 是是 (1 1)实数)实数 (2 2)虚数)虚数 (3 3)纯虚数)纯虚数immmz) 1(222 0bia则_ _b
4、a我们知道若我们知道若如何定义两个复数的相等?如何定义两个复数的相等?注意注意:一般对两个复数只能说相等或不相等;:一般对两个复数只能说相等或不相等;不能比较大小不能比较大小。00 ,rdcba 若dicbia dbcaiyyix)3()12( ryx ,. yx与与i iyixyx4222 解题思考:解题思考:复数相等复数相等的问题的问题转化转化求方程组的解求方程组的解的问题的问题一种重要的数学思想:一种重要的数学思想:转化思想转化思想1.1.虚数单位虚数单位i的引入;的引入;2.2.复数有关概念:复数有关概念:),( rbrabiaz dicbia dbca*znni424ni34ni14
5、ni1-1iib 你能否找到用来表示复数的你能否找到用来表示复数的几何模型几何模型呢?呢?xo1实数可以用实数可以用数轴数轴上的点来表示。上的点来表示。一一对应一一对应 规定了规定了正方向,正方向,直线直线数轴数轴原点,原点,单位长度单位长度实数实数 数轴数轴上的点上的点 (形形)(数数)(几何模型几何模型)复数复数z=a+bi有序实数对有序实数对(a,b)直角坐标系中的点直角坐标系中的点z(a,b)xyobaz(a,b) 建立了平面直角建立了平面直角坐标系来表示复数的坐标系来表示复数的平面平面x轴轴-实轴实轴y轴轴-虚轴虚轴(数)(数)(形)(形)-复数平面复数平面 (简称简称复平面复平面)
6、一一对应一一对应z=a+bi概念辨析概念辨析例题例题平面向量平面向量oz实数绝对值的实数绝对值的几何意义几何意义:能否把绝对值概念推广到复数范围呢?能否把绝对值概念推广到复数范围呢?xoaa| a | = | oa | 实数实数a在数轴上所在数轴上所对应的点对应的点a到原点到原点o的距离。的距离。xoz=a+biy| z | = |oz|复数的绝对值复数的绝对值( (复数的模复数的模) )z (a,b) 0)(a 0)(a aa22ba 复数复数 z=a+biz=a+bi在复在复平面上对应的点平面上对应的点z(a,b)到原点的距离。到原点的距离。 例例3 求下列复数的模:求下列复数的模: (1
7、)z1=- -5i (2)z2=- -3+4i (3)z3=5- -5i(3)(3)满足满足|z|=5(zc)|z|=5(zc)的的z z值有几个?值有几个?思考:思考:(2)(2)满足满足|z|=5(zr)|z|=5(zr)的的z z值有几个?值有几个?(4)z4=1+mi(mr) (5)z5=4a- -3ai(a0)(1)(1)复数的模能否比较大小?复数的模能否比较大小? 这些复这些复 数对应的点在复平面上构成怎样的图形?数对应的点在复平面上构成怎样的图形? 图示图示xyo设设z=x+yi(x,yr)z=x+yi(x,yr) 满足满足|z|=5(zc)|z|=5(zc)的的复复数数z z对
8、应的点在复平对应的点在复平面上将构成怎样的面上将构成怎样的图形?图形?55555 22yxz0 3 4 5 4 3 0 5 4 3 0 3- 4- 5- yx(a)在复平面内,对应于实数的点都在实在复平面内,对应于实数的点都在实 轴上;轴上;(b)在复平面内,对应于纯虚数的点都在在复平面内,对应于纯虚数的点都在 虚轴上;虚轴上;(c)在复平面内,实轴上的点所对应的复在复平面内,实轴上的点所对应的复 数都是实数;数都是实数;(d)在复平面内,虚轴上的点所对应的复在复平面内,虚轴上的点所对应的复 数都是纯虚数。数都是纯虚数。辨析:辨析:1下列命题中的假命题是(下列命题中的假命题是( )d 2“a=0”是是“复数复数a+bi (a , br)所对所对应的点在虚轴上应的点在虚轴上”的(的( )。)。 (a)必要不充分条件必要不充分条件 (b)充分不必要条件充分不必要条件 (c)充要条件充要条件 (d)不充分不必要条件不充分不必要条件c例例2 已知复数已知复数z=(m2+m- -6)+(m2+m-2)i-2)i在复平面内所对应的点位于第二象限,在复平面内所对应的点位于第二象限,求实数求实数m允许的取值范围。允许的取值范围。 变式:变式:证明对一切证明对一切m,此复数所对应的,此复数所对应的点不可能位于第四象限。点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年城市照明项目LED路灯购销合同
- 2024年建筑工程分包协议书
- 2024年云计算服务互操作性测试合同
- 2024广告发布委托合同模板样本
- 2024年工程质量检测合同标准
- 2024年度物业服务合同:日常房屋租住过程中的管理与维护
- 2024年度旅游开发项目合同
- 2024年度影视制作与发布协议
- 儿子结婚上父亲致辞
- 习惯为主题的演讲稿3篇
- 电气自动化专业个人职业生涯规划书
- 国信集团招聘试题
- 个人招生计划方案
- 2024年科技创新崛起
- 大学生职业生涯规划成长赛道 (第二版)
- 山药的栽培技术
- 浙江省绍兴市诸暨市2023-2024学年七年级上学期期末语文试题
- 酒精性肝硬化查房
- 2024年学校禁毒安全工作计划
- 透析中合并心衰护理课件
- 初中数学因式分解练习题100题附详解
评论
0/150
提交评论