版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、11.4.2 1.4.2 正弦函数、余弦函数的性质正弦函数、余弦函数的性质 第二课时第二课时2问题提出问题提出1.1.周期函数是怎样定义的?周期函数是怎样定义的? 对于函数对于函数f(x)f(x),如果存在一个非,如果存在一个非零常数零常数T T,使得当,使得当x x取定义域内的每一取定义域内的每一个值时,都有个值时,都有f(x +T)=f(x),f(x +T)=f(x), 那么函那么函数数f(x)f(x)就叫做周期函数,非零常数就叫做周期函数,非零常数T T就就叫做这个函数的周期叫做这个函数的周期. .32.2.正、余弦函数的最小正周期是多少?正、余弦函数的最小正周期是多少?函数函数 和和
2、的最小正周期是多少?的最小正周期是多少?si n()yAxwj=+cos()yAxwj=+(0,0)Aw3.3.周期性是正、余弦函数所具有的一个周期性是正、余弦函数所具有的一个基本性质,此外,正、余弦函数还具有基本性质,此外,正、余弦函数还具有哪些性质呢?我们将对此作进一步探究哪些性质呢?我们将对此作进一步探究. .45探究(一):正、余弦函数的奇偶性和单调性探究(一):正、余弦函数的奇偶性和单调性思考思考1 1:观察下列正弦曲线和余弦曲线的观察下列正弦曲线和余弦曲线的对称性,你有什么发现?对称性,你有什么发现?y y-1xO123456-2-3-4-5-6-y=sinxy=sinxxyO1-
3、1222222222222y=cosxy=cosx6思考思考2 2:上述对称性反映出正、余弦函数上述对称性反映出正、余弦函数分别具有什么性质?如何从理论上加以分别具有什么性质?如何从理论上加以验证?验证?正弦函数是奇函数,余弦函数是偶函数正弦函数是奇函数,余弦函数是偶函数. .7思考思考3 3:观察正弦曲线,正弦函数在哪些观察正弦曲线,正弦函数在哪些区间上是增函数?在哪些区间上是减函区间上是增函数?在哪些区间上是减函数?如何将这些单调区间进行整合?数?如何将这些单调区间进行整合?y y-1xO123456-2-3-4-5-6-y=sinxy=sinx正弦函数在每一个闭区间正弦函数在每一个闭区间
4、上都是增函数;在每一个闭区间上都是增函数;在每一个闭区间 上都是减函数上都是减函数.222kk222kk 8思考思考4 4:类似地,余弦函数在哪些区间上类似地,余弦函数在哪些区间上是增函数?在哪些区间上是减函数?是增函数?在哪些区间上是减函数?余弦函数在每一个闭区间余弦函数在每一个闭区间上都是增函数;在每一个闭区间上都是增函数;在每一个闭区间 上都是减函数上都是减函数. .22kk22kkxyO1-1222222222222y=cosxy=cosx9思考思考5 5:正弦函数在每一个开区间正弦函数在每一个开区间(2k2k, 2k2k) (kZ)(kZ)上都是增函上都是增函数,能否认为正弦函数在第
5、一象限是增数,能否认为正弦函数在第一象限是增函数?函数?210探究(二):正、余弦函数的最值与对称性探究(二):正、余弦函数的最值与对称性 思考思考1 1:观察正弦曲线和余弦曲线,正、观察正弦曲线和余弦曲线,正、余弦函数是否存在最大值和最小值?若余弦函数是否存在最大值和最小值?若存在,其最大值和最小值分别为多少?存在,其最大值和最小值分别为多少?思考思考2 2:当自变量当自变量x x分别取何值时,正弦分别取何值时,正弦函数函数y=sinxy=sinx取得最大值取得最大值1 1和最小值和最小值1 1?正弦函数当且仅当正弦函数当且仅当 时取最大时取最大值值1, 1, 当且仅当当且仅当 时取最小值时
6、取最小值-1 -1 2xk 2xk 11思考思考3 3:当自变量当自变量x x分别取何值时,余弦分别取何值时,余弦函数函数y=cosxy=cosx取得最大值取得最大值1 1和最小值和最小值1 1?余弦函数当且仅当余弦函数当且仅当 时取最大值时取最大值1, 1, 当且仅当当且仅当 时取最小值时取最小值-1. -1. 2xk(21)xk12思考思考4 4:根据上述结论,正、余弦函数的根据上述结论,正、余弦函数的值域是什么?函数值域是什么?函数y=Asinxy=Asinx(A0A0)的值域是什么?的值域是什么?思考思考5 5:正弦曲线除了关于原点对称外,正弦曲线除了关于原点对称外,是否还关于其它的点
7、和直线对称?是否还关于其它的点和直线对称? 正弦曲线关于点正弦曲线关于点(kk,0 0)和直线和直线 对称对称. .()2xkkZpp=+-|A|-|A|,|A|A|13思考思考6 6:余弦曲线除了关于余弦曲线除了关于y y轴对称外,轴对称外,是否还关于其它的点和直线对称?是否还关于其它的点和直线对称?余弦曲线关于点余弦曲线关于点 和直线和直线x=kx=k对称对称. .(,0)2kpp+14理论迁移理论迁移 例例1 1 求下列函数的最大值和最小值,并求下列函数的最大值和最小值,并写出取最大值、最小值时自变量写出取最大值、最小值时自变量x x的集合的集合 (1 1) y=cosxy=cosx1
8、1,xRxR; (2 2)y=y=3sin2x3sin2x,xR.xR.15 例例3 3 求函数求函数 ,xx22,22的单调递增区间的单调递增区间. .1sin()23yx 例例2 2 比较下列各组数的大小比较下列各组数的大小: :(1) sin()sin();1810与2317(2) cos()cos().5与16小结作业小结作业 1. 1. 正、余弦函数的基本性质主要指周期正、余弦函数的基本性质主要指周期性、奇偶性、单调性、对称性和最值,性、奇偶性、单调性、对称性和最值,它们都是结合图象得出来的,要求熟练它们都是结合图象得出来的,要求熟练掌握掌握. .2.2.正弦函数是奇函数,余弦函数是偶函正弦函数是奇函数,余弦函数是偶函数数. .一般地,一般地,y=Asinxy=Asinx是奇函数,是奇函数,y=Acosxy=Acosx(A0A0)是偶函数)是偶函数. .17作业:作业:P40-41P40
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年05月北京2024届中国民生银行资产管理部毕业生“未来银行家”暑期管培生校园招考笔试历年参考题库附带答案详解
- 2025年度房地产开发项目承包商资金保障担保合同3篇
- 2025年度拆迁安置补偿合同模板(含房屋买卖)4篇
- 2025年度厂房用电安全改造安装合同范本4篇
- 2025年度城市地下综合管廊建设场地平整与施工合同4篇
- 2025年度茶园场地承包合同范本-茶树种植基地合作经营4篇
- 2024年04月江苏交通银行信用卡中心苏州分中心校园招考笔试历年参考题库附带答案详解
- 临时暑期工劳动协议格式2024年版B版
- 2025年度茶园采摘加工一体化项目合作协议4篇
- 2025年度建筑材料运输安全管理与培训合同3篇
- 2024人教新版七年级上册英语单词英译汉默写表
- 《向心力》参考课件4
- 2024至2030年中国膨润土行业投资战略分析及发展前景研究报告
- 【地理】地图的选择和应用(分层练) 2024-2025学年七年级地理上册同步备课系列(人教版)
- 2024年深圳中考数学真题及答案
- 土方转运合同协议书
- Module 3 Unit 1 Point to the door(教学设计)-2024-2025学年外研版(三起)英语三年级上册
- 智能交通信号灯安装合同样本
- 安全生产法律法规清单(2024年5月版)
- 江苏省连云港市2023-2024学年八年级下学期期末道德与法治试卷(含答案解析)
- 2024年大学试题(宗教学)-佛教文化笔试考试历年高频考点试题摘选含答案
评论
0/150
提交评论