版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第九章第九章面板数据模型面板数据模型1第一节第一节 面板数据面板数据第二节第二节 面板数据回归模型面板数据回归模型第三节第三节 混合回归模型混合回归模型第四节第四节 变截距回归模型变截距回归模型第五节第五节 变系数回归模型变系数回归模型第六节第六节 效应检验与模型形式设定检验效应检验与模型形式设定检验第七节第七节 面板数据的单位根检验和协整检验面板数据的单位根检验和协整检验第八节第八节 案例分析案例分析2 面板数据(面板数据(panel data):也叫:也叫平行数据平行数据,指,指某一变量关于时间和横截面两个维度的数据,记为某一变量关于时间和横截面两个维度的数据,记为xit ,其中,其中 ,
2、表示,表示n个不同的对象(如个不同的对象(如国家、省、县、行业、企业、个人)国家、省、县、行业、企业、个人), ,表示,表示t个观测期。个观测期。1 2 , ,in1 2 , ,tt第一节第一节 面板数据面板数据3 平衡面板数据平衡面板数据4 非平衡面板数据非平衡面板数据5 扩展的面板模型扩展的面板模型1. 伪面板模型:伪面板模型:如果按照某种属性如果按照某种属性( (例如,年龄、职业和身份等例如,年龄、职业和身份等) )将各期调查对象分成不同的群;对于各个观测期,将各期调查对象分成不同的群;对于各个观测期,选择各群内观测数据的均值选择各群内观测数据的均值( (中位数或分位数中位数或分位数)
3、),即可构造以群为即可构造以群为个体个体单位的面板数据。我们单位的面板数据。我们把这种以群为个体而构造的人工面板数据为伪面把这种以群为个体而构造的人工面板数据为伪面板数据板数据(pseudo panel data)(pseudo panel data)。62. 轮换面板轮换面板模型模型:同一个个体可能不愿被一次又一次的被回访,为同一个个体可能不愿被一次又一次的被回访,为了保持调查中个体数目相同,在第二期调查中退了保持调查中个体数目相同,在第二期调查中退出的部分个体,被相同数目的新的个体所替代,出的部分个体,被相同数目的新的个体所替代,这种允许研究者检验这种允许研究者检验 “ “抽样时间抽样时间
4、”偏倚效应偏倚效应(初次采访和随后的采访之间的回答有显著的改(初次采访和随后的采访之间的回答有显著的改变)的存在性叫轮换面板。对于轮换面板,每批变)的存在性叫轮换面板。对于轮换面板,每批加到面板的新个体组提供了检验抽样时间偏倚效加到面板的新个体组提供了检验抽样时间偏倚效应的方法。应的方法。73. 空间面板空间面板模型模型:当考虑国家、地区、州、县等相关截面数据时,当考虑国家、地区、州、县等相关截面数据时,这些总量个体可能表现出必须处理的截面相关这些总量个体可能表现出必须处理的截面相关性。现在有大量运用空间数据的文献处理这种性。现在有大量运用空间数据的文献处理这种相关性。这种空间相依模型在区域科
5、学和城市相关性。这种空间相依模型在区域科学和城市经济学中比较普遍。具体来说,这些模型使用经济学中比较普遍。具体来说,这些模型使用经济距离测度设定了面板数据的空间自相关性经济距离测度设定了面板数据的空间自相关性和空间结构(空间异质性)。和空间结构(空间异质性)。84. 计数面板计数面板模型模型:被解释变量是计数面板数据的例子很多。例如,被解释变量是计数面板数据的例子很多。例如,一段时间内一家公司的竟标次数、一个人去看一段时间内一家公司的竟标次数、一个人去看医生的次数、每天吸烟者的数量及一个研发机医生的次数、每天吸烟者的数量及一个研发机构登记专利的数目。虽然可以运用传统面板回构登记专利的数目。虽然
6、可以运用传统面板回归模型对计数面板数据建模,但鉴于被解释变归模型对计数面板数据建模,但鉴于被解释变量具有量具有0 0及非负离散取值的特征,运用泊松面及非负离散取值的特征,运用泊松面板回归模型建模更为合适。板回归模型建模更为合适。9第二节第二节 面板数据回归模型面板数据回归模型 一、面板数据回归模型的一般形式:一、面板数据回归模型的一般形式: 其中,其中,i=1, 2, ,n 表示个表示个n个体;个体; t=1, 2, ,t 表表示示t个时期;个时期;yit为被解释变量为被解释变量, 表示第表示第i个个体在个个体在t时时期的观测值;期的观测值;xkit 是解释变量是解释变量, 表示第表示第k个解
7、释变量个解释变量对于个体对于个体 i 在时期在时期 t 的观测值;的观测值; 是待估参数;是待估参数;uit是随机干扰项。是随机干扰项。 ittiitkkitkitkitituuxy ,10kit 10 称为称为个体效应个体效应。反映个体不随时间变化的差异性。反映个体不随时间变化的差异性。 称为称为时间效应时间效应。反映不随个体变化的时间上的差。反映不随个体变化的时间上的差异性。异性。ittiitkkitkitkitituuxy ,10i t 11 在上式模型中,样本容量(在上式模型中,样本容量(nt)远远小于参数个)远远小于参数个数,这使得模型无法估计。数,这使得模型无法估计。为了实现模型的
8、估计,可以分别建立以下两类模为了实现模型的估计,可以分别建立以下两类模型:从个体成员角度考虑,型:从个体成员角度考虑,;在时间点上截面,;在时间点上截面,。ittiitkkitkitkitituuxy ,1012 panel data模型简化为如下形式:模型简化为如下形式:ittiitkkitkitkiituuxy ,10 panel data模型简化为如下形式:模型简化为如下形式:ittiitkkitkitktituuxy ,10ittiitkkitkitkitituuxy ,1013二、二、 面板数据回归模型的分类面板数据回归模型的分类 由于含有由于含有 n 个个体成员方程的式和含有个个体
9、成员方程的式和含有 t个个时间截面方程的式两种形式的模型在估计方法上类时间截面方程的式两种形式的模型在估计方法上类似,因此本章主要讨论含有似,因此本章主要讨论含有 n 个个体成员方程的个个体成员方程的panel data模型的估计方法。模型的估计方法。 14根据对截距项和解释变量系数的不同假设,可将面根据对截距项和解释变量系数的不同假设,可将面板数据回归模型分为:板数据回归模型分为:混合回归模型混合回归模型、变截距回归变截距回归模型模型和和变系数回归模型变系数回归模型3种类型。种类型。ittiitkkitkitkiituuxy ,1015混合回归模型混合回归模型: :假设截距项和解释变量系数对
10、于假设截距项和解释变量系数对于所有的截面个体成员都是相同的,即假设在个所有的截面个体成员都是相同的,即假设在个体成员上既无个体效应,也无结构变化。体成员上既无个体效应,也无结构变化。ittiitkkitkitkiituuxy ,10混合回归模型的模型形式为混合回归模型的模型形式为: :ititkkitkitkituxy ,10ttni, 2 , 1, 2 , 1 16变截距回归模型变截距回归模型: :假定在截面个体成员上截距项假定在截面个体成员上截距项不同,而模型的解释变量系数是相同的不同,而模型的解释变量系数是相同的ittiitkkitkitkiituuxy ,10变截距变截距回归模型的模型
11、形式为回归模型的模型形式为: :ittiitkkitkitkituuxy ,1017变系数回归模型变系数回归模型: :假定在截面个体成员上截距项假定在截面个体成员上截距项和模型的解释变量系数都不同。和模型的解释变量系数都不同。ittiitkkitkitkiituuxy ,1018根据根据 和和 与模型解释变量是否相关,面板与模型解释变量是否相关,面板数据的个体效应和时间效应又分两种情形:数据的个体效应和时间效应又分两种情形:固固定效应定效应和和随机效应。随机效应。ittiitkkitkitkiituuxy ,10如果个体效应如果个体效应 与模型中的解释变量是与模型中的解释变量是相关相关的的,
12、,我们就称这种个体效应是我们就称这种个体效应是固定效应固定效应。反之,如果。反之,如果个体效应个体效应 与模型中的解释变量是不相关的,我与模型中的解释变量是不相关的,我们称之为们称之为随机效应随机效应。i t i i 如果时间效应如果时间效应 与模型中的解释变量是与模型中的解释变量是相关相关的的, ,我们就称这种时间效应是我们就称这种时间效应是固定效应固定效应。反之,如果。反之,如果时间效应时间效应 与模型中的解释变量是不相关的,我与模型中的解释变量是不相关的,我们称之为们称之为随机效应随机效应。t t 19第三节第三节 混合回归模型混合回归模型从时间上看,从时间上看,不同年份不同年份之间不存
13、在显著性差异;之间不存在显著性差异;从截面上看,从截面上看,不同个体不同个体之间也不存在显著性差异,之间也不存在显著性差异,那么就可以直接把面板数据混合在一起那么就可以直接把面板数据混合在一起(相当于将相当于将多个时期的截面数据放在一起作为样本数据多个时期的截面数据放在一起作为样本数据),用,用普通最小二乘法普通最小二乘法(ols)估计参数,且估计量是)估计参数,且估计量是线性、无偏、有效和一致的。线性、无偏、有效和一致的。一、混合回归模型一、混合回归模型20二、二、混合回归模型的估计混合回归模型的估计 (eviews操作操作)21第四节第四节 变截距回归模型变截距回归模型一、变截距模型的分类
14、一、变截距模型的分类 讨论三种类型,即讨论三种类型,即个体固定效应变截距模型个体固定效应变截距模型、时点时点固定效应变截距模型固定效应变截距模型、时点个体固定效应变截距模时点个体固定效应变截距模型型。ittiitkkitkitkituuxy ,10 变截距模型变截距模型ittiitkkitkitkiituuxy ,10(一)固定效应变截距模型(一)固定效应变截距模型221.个体固定效应变截距模型一般形式:个体固定效应变截距模型一般形式:其中,其中, 表示不同个体之间的表示不同个体之间的差异化效应差异化效应。itiitkkitkitkituuxy ,10i 2.时点固定效应变截距模型一般形式:时
15、点固定效应变截距模型一般形式:其中,其中, 表示不同截面(时点)之间的表示不同截面(时点)之间的差异化效应差异化效应。ittitkkitkitkituuxy ,10t 3.时点个体固定效应变截距模型一般形式:时点个体固定效应变截距模型一般形式:ittiitkkitkitkituuxy ,10ittiitkkitkitkituuxy ,1023(二)随机效应变截距模型(二)随机效应变截距模型 讨论三种类型,即讨论三种类型,即个体随机效应变截距模型个体随机效应变截距模型、时点时点随机效应变截距模型随机效应变截距模型、时点个体随机效应变截距模时点个体随机效应变截距模型型。ittiitkkitkitk
16、ituuxy ,1024面板数据模型中的参数估计量既不同于截面数据估面板数据模型中的参数估计量既不同于截面数据估计量,也不同于时间序列估计量,其估计方法随着计量,也不同于时间序列估计量,其估计方法随着模型形式变化而变化。模型形式变化而变化。(一)固定效应变截距模型的估计(一)固定效应变截距模型的估计 1.1.最小二乘虚拟变量(最小二乘虚拟变量(lsdv)估计)估计 二、变截距模型的估计二、变截距模型的估计25(1 1)个体固定效应变截距模型一般形式:)个体固定效应变截距模型一般形式:itiitkkitkitkituuxy ,1026(2)时点固定效应变截距模型一般形式:时点固定效应变截距模型一
17、般形式:ittitkkitkitkituuxy ,1027(3)时点个体固定效应变截距模型一般形式:时点个体固定效应变截距模型一般形式:ittiitkkitkitkituuxy ,1028截面加权截面加权(个体截面异方差情形的个体截面异方差情形的gls估估)广义最小二乘估计广义最小二乘估计个体截面异方差是指各个个体方程的随机干扰项个体截面异方差是指各个个体方程的随机干扰项之间存在异方差,但个体和时期之间协方差为零。之间存在异方差,但个体和时期之间协方差为零。29当残差具有个体截面异方差时最好进行截面加权回当残差具有个体截面异方差时最好进行截面加权回归:归:30当残差具有同期相关协方差情形时,当
18、残差具有同期相关协方差情形时,sur加权最加权最小二乘是可行的小二乘是可行的gls估计量:估计量:31此时此时 的的sur估计为:估计为:32(二)随机效应变截距模型的估计(二)随机效应变截距模型的估计eviews按下列步骤估计随机影响模型:按下列步骤估计随机影响模型:33第五节第五节 变系数回归模型变系数回归模型 前面所介绍的变截距模型中,横截面成员的个前面所介绍的变截距模型中,横截面成员的个体影响是用变化的截距来反映的,即用变化的截距体影响是用变化的截距来反映的,即用变化的截距来反映模型中忽略的反映个体差异的变量的影响。来反映模型中忽略的反映个体差异的变量的影响。然而现实中变化的经济结构或
19、不同的社会经济背景然而现实中变化的经济结构或不同的社会经济背景等因素有时会导致反映经济结构的参数随着横截面等因素有时会导致反映经济结构的参数随着横截面个体的变化而变化。因此,当现实数据不支持变截个体的变化而变化。因此,当现实数据不支持变截距模型时,便需要考虑这种系数随横截面个体的变距模型时,便需要考虑这种系数随横截面个体的变化而改变的变系数模型。化而改变的变系数模型。 34变系数模型的一般形式如下:变系数模型的一般形式如下:ittiitkkitkitkiituuxy ,10 为变系数,反映模型结构随截面的变化而变化。为变系数,反映模型结构随截面的变化而变化。ki 类似于变截距模型,变系数模型也
20、分为固定影响类似于变截距模型,变系数模型也分为固定影响变系数模型和随机影响变系数模型两种类型。变系数模型和随机影响变系数模型两种类型。 35eviews按下列步骤估计按下列步骤估计变系数模型变系数模型:36第六节效应检验与模型形式设定检验第六节效应检验与模型形式设定检验一、一、hausman检验检验 建立面板数据模型前的首要任务是确定被解建立面板数据模型前的首要任务是确定被解释变量与截距项和系数的关系,截距项是否相同、释变量与截距项和系数的关系,截距项是否相同、系数是否一致,是固定效应系数是否一致,是固定效应还是随机效应模型,从还是随机效应模型,从而避免模型设定的偏差,改进参数估计的有效性。而
21、避免模型设定的偏差,改进参数估计的有效性。 对于如何检验模型中个体效应或时间效应与解对于如何检验模型中个体效应或时间效应与解释变量之间是否相关,释变量之间是否相关,hausman(1978)提出了一)提出了一种严格的统计检验方法种严格的统计检验方法hausman检验。检验。37固定效应模型:固定效应模型:lsdv估计量无偏;估计量无偏;gls估计量有偏。估计量有偏。随机效应模型:随机效应模型:lsdv和和gls估计量都无偏,但估计量都无偏,但lsdv估计量有较大方差;。估计量有较大方差;。固定效应模型:固定效应模型:lsdv估计量和估计量和gls估计量的估计结估计量的估计结果有较大的差异。果有
22、较大的差异。随机效应模型:随机效应模型:lsdv估计量和估计量和gls估计量的估计结估计量的估计结果就比较接近。果就比较接近。hausman检验的原理检验的原理38 hausman证明在原假设下,统计量证明在原假设下,统计量w服从自由度服从自由度为为k(模型中解释变量的个数)的(模型中解释变量的个数)的 分布,即分布,即step1:设定原假设:设定原假设h0 :模型的个体效应模型的个体效应或时间效应或时间效应与解释变量无关;与解释变量无关;step2:构造:构造hausman检验的检验的w统计量统计量hausman检验检验其中其中b, 分别为回归系数的分别为回归系数的lsdv估计向量,估计向量
23、,gls估估计向量;计向量; 为为 之差的方差,即之差的方差,即1 bbw bvar b、2 )(21kbbw 39 eviews中可以实现检验模型中个体影响与解释中可以实现检验模型中个体影响与解释变量之间是否相关的变量之间是否相关的hausman检验。为了实现检验。为了实现hausman检验,必须首先估计一个随机效应模检验,必须首先估计一个随机效应模型。然后,选择型。然后,选择view/fixed/random effects testing/correlated random effects - hausman test,eviews将自动估计相应的固定效应模型,将自动估计相应的固定效应模
24、型,计算检验统计量,显示检验结果和辅助回归结计算检验统计量,显示检验结果和辅助回归结果。果。40二、二、 为了检验面板数据模型的类型:混合回归模型、为了检验面板数据模型的类型:混合回归模型、变截距回归模型还是变系数回归模型,变截距回归模型还是变系数回归模型,经常使用的经常使用的检验是协方差分析检验检验是协方差分析检验(f检验检验),主要检验如下两个,主要检验如下两个假设:假设:h1:变截距回归模型变截距回归模型 h2:混合回归模型混合回归模型可见如果接受假设可见如果接受假设 h2 则可以认为模型为则可以认为模型为混合回归混合回归模型模型,无需进行进一步的检验。如果拒绝假设,无需进行进一步的检验
25、。如果拒绝假设h2,则需检验假设则需检验假设h1。如果接受如果接受h1,则认为模型为则认为模型为变截变截距回归模型距回归模型,反之拒绝,反之拒绝h1 ,则认为模型为,则认为模型为回回归归。41 下面介绍假设检验的下面介绍假设检验的 f f 统计量的计算方法。首统计量的计算方法。首先计算先计算回归回归的残差平方和,记为的残差平方和,记为s1 1 ;回归回归的残差平方和记为的残差平方和记为s2 2 ;混合回归模型混合回归模型的残差平方和记为的残差平方和记为s3 3。 )1(),1)(1()1()1)(1/()(1132 ktnknfknntsknssf构造并计算统计量构造并计算统计量)1(,)1(
26、)1()1/()(1121 ktnknfknntsknssf42 例例9-343第七节第七节 面板数据的单位根检验和协整检验面板数据的单位根检验和协整检验一、面板数据的单位根检验一、面板数据的单位根检验 (一)(一)面板数据的单位根检验分类面板数据的单位根检验分类 (二)(二)面板数据的单位根检验应用举例面板数据的单位根检验应用举例二、面板数据的协整检验二、面板数据的协整检验 (一)(一)检验方法分类检验方法分类 (二)(二)面板数据协整检验的应用举例面板数据协整检验的应用举例44 一般情况下可以将面板数据的单位根检验划分一般情况下可以将面板数据的单位根检验划分为两大类:为两大类: 一类为一类为相同根相同根情形下的单位根检验,检验方法情形下的单位根检验,检验方法包括包括llc(levin-lin-chu)检验、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国管道补偿器行业十三五需求及投资战略分析报告
- 2024-2030年中国第三方检测认证行业发展创新模式及投资规划分析报告版
- 2024-2030年中国硅藻泥行业前景预测投资规模分析报告
- 2024-2030年中国矿物天花板行业现状动态与投资前景预测报告
- 学校体育活动组织管理方案
- 教师志愿服务团建方案
- 地坑施工环境保护方案
- 2024年度KTV场所网络信息安全合同
- 消防救援有限空间作业安全指导原则
- 公共场所消防安全与应急预案规范
- 海洋工程柔性立管发展概况
- 汉语教师志愿者培训大纲
- 护理导论 评判性思维
- SPC培训资料_2
- 学习适应性测验(AAT)
- ADS创建自己的元件库
- MATLAB仿真三相桥式整流电路(详细完美)
- 2019年重庆普通高中会考通用技术真题及答案
- 天秤座小奏鸣曲,Libra Sonatine;迪安斯,Roland Dyens(古典吉他谱)
- 钢筋混凝土工程施工及验收规范最新(完整版)
- 光缆施工规范及要求
评论
0/150
提交评论