版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、9建模论文 2011114114 覃婧航空公司的预订票策略摘要:本文研究的是机票预定价格和数量的预测及优化设计问题。在激烈的市场竞争中,航空公司为争取更多的客源而开展的一个优质服务项目是预订票业务,本模型针对预订票业务,根据实际情况,制定合理的预定策略需从经济利益最大化和社会声誉最好两方面来考虑。社会声誉可以用定了票来登机因飞机满员而不能起飞的乘客不超过某一给定值来衡量。这个问题可化为经济利益最大化为单目标来求解。航空公司的经济利润可以用机票收入扣除飞行费用和赔偿金后的利润来衡量,社会声誉可以用持票按时前来登记、但因满员不能飞走的乘客,即被挤掉者限制在一定数量为标准,这个问题的关键因素预订票的
2、成可是否按时前来登机是随机的,所以经济利益和社会声誉两个指标都应该在平均意义下衡量。于是航空公司预订票模型简化为一个两目标的规划问题,即求航空公司的平均利润和被挤掉的乘客数超过j人的概率之间的平衡关系,决策变量是预订票数量的限额m。建立补偿金模型,综合考虑航空公司的经济效益和社会声誉,给定赔付比率为0.2,被挤掉的乘客数超过j人的概率为0.1,对于飞机最大容量为n 200,若估计预订票乘客不按时前来登机概率为q=0.1,则预订票数量的限额m=211.最后,考虑不同的客源的实际需要,对补偿金模型进行改进优化,比较详细的给出了航空公司的预订票策略,具有很强的实际指导意义。关键词:matlab软件
3、模型转化 模型改进 订票策略 实际平均利润正文一、 问题重述: 航空公司为了提高经济效益开展了一项预订票业务。随之带来一系列的问题:若预订票的数量恰等于飞机的容量,则由于总会有部分已订票的乘客不按时前来登机,致使飞机因不满员而利润降低,或亏本;若不限制订票的数量,那些本已订好了某家航空公司的某趟航班的乘客,却被意外地告知此趟航班已满,公司不管以什么方式补救总会引起乘客的抱怨,导致荣誉受损。试建立航空公司订票决策的数学模型,解决以上的问题二、 问题分析:该问题作为线性规划问题,题目中给定的机票预定策略可以理解为了航空公司的经济利益与社会声誉,确定预订票的最佳数量。故问题转化为:怎样确定预订票数量
4、限额,使得利润最大,同时被挤掉的乘客的数量尽可能小。故该题是一个以预订票数量为决策变量的双目标随机规划问题。设飞机容量为n,若公司限制只预订m张机票,那么由于总会有一些订了机票的乘客不按时前来登机,致使飞机因不满员飞行而利润降低,甚至亏本。如果不限制订票数量,则当持票按时前来登机的乘客超过飞机容量时,将会引起那些不能登机的乘客(以下称被挤掉者)的抱怨,导致公司声誉受损和一定的经济损失(如付给赔偿金)。这样,综合考虑公司的经济利益和社会声誉,必然存在一个恰当的预订票数量的限额。假设已经知道飞行费用(可设与乘客人数无关)、机票价格(一般飞机满员50%_60%时不亏本,由飞行费用可确定价格)、飞机容
5、量、每位被挤掉者的赔偿金等数据,以及由统计资料估计的每位乘客不按时前来登机的概率(不妨认为乘客间是相互独立的),建立一个数学模型,综合考虑公司经济利益(飞行费用、赔偿金与机票收入等),确定最佳的预订票数量。航空公司的经济利润可以用机票收入扣除飞行费用和赔偿金后的利润来衡量,社会声誉可以用持票按时前来登记、但因满员不能飞走的乘客,即被挤掉者限制在一定数量为标准,这个问题的关键因素预订票的成可是否按时前来登机是随机的,所以经济利益和社会声誉两个指标都应该在平均意义下衡量,这是一个两目标的规划问题,决策变量是预订票数量的限额。三、 模型假设:飞机容量为常数 n,机票价格为常数 g,飞行 费用为常数
6、r。机票价格按照来制订,其中 是利润调节因子,如 表示飞机60%满员就不亏本。预订票数量的限额为常数 m(>n) ,每位乘客不按时前来登机的概率为 p,各位乘客是否按时登机是相互独立的。每位被挤掉的乘客获得的赔偿金为常数b。四、 符号定义与说明:飞机上乘客容量r飞机飞行的费用常数利润调节因子b超员赔偿给被挤掉单位乘客的钱m预售票数(m>n)g飞机票票价s每次航班利润p预定票的人不按时登机的概率k不按时前来的乘客人数s公司的经济利益(平均利润)五、 模型的建立与求解:模型建立:1.公司的经济利益可以用平均利润s来衡量,每次航班的利润s为从机票收入中减去飞行费用和可能发生的赔偿金。当m
7、位乘客中有k位不按时前来登机时 (1)由假设2,不按时前来登机的乘客数k服从二项分布,于是概率 (2)平均利润s(即s的期望)为(3)化简(3)式,并注意到可得 (4)当n,g,r,p给定后可以求m使s(m)最大。2.公司从社会声誉和经济利益两方面考虑,应该要求被挤掉的乘客不要太多,而由于被挤掉者的数量式随机的,可以用被挤掉的乘客数超过若干人的概率作为度量指标。记被挤掉的乘客数超过j人的概率为,因为被挤掉的乘客数超过j人,等价于m位预订票的乘客中不按时前来登机的不超过m-n-j-1人,所以 (5)对于给定的n,j,显然当m=n+j时不会有挤掉的乘客,即=0。而当m变大时单调增加。 综上,s(m
8、)和虽然是这个优化问题的两个目标,但是可以将不超过某给定值作为约束条件,以s(m)为单目标函数来求解。模型求解 为了减少s(m)中的参数,取s(m)除以飞行费用r为新的目标函数j(m),其含义时单位费用获得的平均利润,注意到假设2中有,由(2)式可得 (6)其中b/g式赔偿金占机票价格的比例。问题化为给定,n,p,b/g,求m使j(m)最大,而约束条件为 (7)其中是小于1的正数。j(m)的经济意义是公司纯利润占固定损耗的比例。模型不能直接求解,但可以通过matlab软件进行数值计算,求得最大值点。模型求解:由以上模型的建立可得该题的规划模型如下: 由此计算载客量为150的飞机所能得到的预期利
9、润,假设和0.1,和0.4,计算 、和,得下表:mp=0.05p=0.1j j1500.5833 0.5833000.5000 0.5000001520.6044 0.6044000.5200 0.5200001540.6245 0.6244000.5400 0.5400001560.6408 0.63990.000500.5600 0.56000.000001580.6500 0.64700.018200.5797 0.57970.000001600.6519 0.64570.125600.5985 0.59850.000501620.6490 0.63890.37290.00410.614
10、8 0.61480.00560.00001640.6443 0.62980.66380.6267 0.62450.03070.00011660.6389 0.62000.86780.6330 0.62850.10600.00191680.6333 0.61000.96150.6340 0.62630.25450.01401700.6278 0.60000.99150.6311 0.61960.46020.06001720.6259 0.61030.66940.17091740.6198 0.59980.83080.35301760.6133 0.58880.92790.5682从上表中可以看出
11、,一架150座的航班,当超额订票的乘客数分别为10和16时,可以达到最大的预期利润。有超过5名乘客发生座位冲撞的概率却分别为12%和10%,有超过10名乘客发生座位冲撞的概率却分别为0%和0.2%。六、 结果分析推广与评价结果分析:1对于所取的n,p, b/g,平均利润随着m的变大都是先增加再减少。不按时前来登机概率为p对需要超额预定的票数有较大影响,为了保证航班满座,就必须多预售一些票。2对于给定的n,p, b/g由0.2增加到0.4时的减少不超过2%,所以不放付给被挤掉的乘客以较高的赔偿金,也不会对其最大利润产生多大影响,而同时赢得社会声誉。3综合考虑经济效益和社会声誉,给定、由表得,若估
12、计p=0.05,m=160,若p=0.1,取m=166.评价:1、 将问题转化成数学中的优化问题,使得题目更加简单清晰;2、 通过模型改进对模型进行了进一步优化,更具有可行性。七、参考文献: 1姜启源、谢金星等 数学建模高等教育出版社第三版2蔡旭辉 刘卫国 蔡立燕等matlab基础与运用教程人民邮电出版社。3覃婧 航空公司的预订票策略附件:matlab程序语言:附录i>> cleara=0;for m=150:2:176; for k=0:m-150-1; pk=binopdf(k,m,0.05); f=m-150-k; s=f*pk; a=a+s; end m j=(1/90)*
13、0.95*m-(1+0.4)*a-1endm = 150j = 0.5833m = 152j = 0.6044m = 154j = 0.6244m = 156j = 0.6398m = 158j = 0.6433m = 160j = 0.6270m = 162j = 0.5855m = 164j = 0.5159m = 166j = 0.4171m = 168j = 0.2889m = 170j = 0.1311m = 172j = -0.0563m = 174j = -0.2731m = 176j = -0.5196附录ii>> cleara=0;for m=150:2:176; for k=0:m-150-1; pk=binopdf(k,m,0.1); f=m-150-k; s=f*pk; a=a+s; end m j=(1/180)*0.95*m-(1+0.2)*a-1endm = 150j = -0.2083m = 152j = -0.1978m = 154j =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《接触网施工》课件 5.2.2 隔离开关引线安装
- 2024年畜牧业发展趋势与教案革新策略
- 2024年全球粮食安全:产量与供应链
- 人教部编版《道德与法治》二年级上册第4课《团团圆圆过中秋》精美课件(第1课时)
- 第47届世界技能大赛江苏省赛区-附件1样题初稿-时装技术
- 健康生活从拼盘开始:2024《水果拼盘》
- 2024年C语言程序设计教案:从理论到实践
- 2024大学贫困申请书(30篇)
- 陕西省汉中市2024-2025学年高一上学期11月期中校际联考试题 生物 含答案
- 2024年《教育学原理》课件在教育管理中的应用与影响
- 小学生数学思维品质的调查研究的开题报告
- DB51T3080-2023研学旅行实践承办机构服务与管理规范
- 苏教版三年级数学上册《笔算两、三位数除以一位数》评课稿
- GB/T 7702.7-2023煤质颗粒活性炭试验方法第7部分:碘吸附值的测定
- 防护林造林工程投资估算指标
- 中国历史的教训-习骅
- 《分散系》说课课件
- 小升初数学苏州外国语学校数学模拟试卷答案版苏教版精
- 抗痉挛体位专题知识讲座
- 广东省3证书高职高考语文试卷和答案
- 茶多酚性质功效及应用
评论
0/150
提交评论