一种基于贪心搜索的实时多目标遮挡处理算法_第1页
一种基于贪心搜索的实时多目标遮挡处理算法_第2页
一种基于贪心搜索的实时多目标遮挡处理算法_第3页
一种基于贪心搜索的实时多目标遮挡处理算法_第4页
一种基于贪心搜索的实时多目标遮挡处理算法_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、ø 36 ø 3 2010 ¢ 3 $ k acta automatica sinicavol. 36, no. 3march, 2010%¼ 1 2 3 1¼ %$f¼¿f%fi, :%,¾q %Ç%¿. %ka$: 1) f%k½%; 2) Ǿ%¿$%, ½f%½ 3) ½ $, fiaf% (qr%$ 2), %½%¼%fi$, $%½. $i¿% ibm fi$fi%½

2、;f%$½. fi, , Ç, doi10.3724/sp.j.1004.2010.00375a greedy searching algorithm for multiple objecttracking and occlusion handlingyang tao1li jing2pan quan3zhang yan-ning1abstract this paper presents a novel real-time multiple object tracking algorithm, which contains three parts: regioncorrel

3、ation based foreground segmentation, merging-splitting based data association and greedy searching based occluded object localization. the main characteristics of the proposed algorithm are summarized as follows: 1) the multiple object tracking and occlusion handling problem is successfully changed

4、into an image classification problem with prior knowledge of object number and feature; 2) a highly efficient greedy searching method is presented to meet real-time capability; 3) it has good performance in expansibility, and it has no constraints about the number of occluded objects, the occlusion

5、ratio and the objectt s motion model. experiment results with hand labeled ibm database demonstrate that the method is effective and efficient.key words multiple object detection and tracking, occlusion handling, greedy searching, intelligent video surveillance%kª%fi¼fifl$%½fi, y,$a,&

6、#189;þÇ$%f. f%fi116 %$% aa$. r$, $þ%, $afi $%.%pf 5 ¼: 1) fi½ 2) fi¾q; 3) ¾qfi; 4) fi; 5) fi. $, ¼ 1) 5) %¼, ¼ 2) qr %¾, f®¼a%½¾ (¼ 3) þ®¼%¿ (¼ 4) %a.k¾, ¼¿f%lfffflfl. $q:, ¾q

7、 %¾ $Ç% , %a¼%½¿¾.1) ¾q %ø¼½%½¾, qr%, %½, qfl%¾qf%. l, q r%q$%, %qr%, ®¼ $. mckenna 13 bremond14 k½, ®,¾. piater 15 ¾k½¾$ 2008-10-22 fi$ 2009-01-21manuscript received october 22, 2008; accep

8、ted january 21,2009¾$q (863 ) (2009aa01z315), ¾ (60903126, 60872145, 60634030), ½i¼$ø (708085) supported by national high technology research and de-velopment program of china (863 program) (2009aa01z315), national natural science foundation of china (60903126,60872145, 6063

9、4030), and cultivation fund of the key scien- tific and technical innovation project, ministry of education of china (708085)1. ffli!$fa fp710129 2. fpÇ$i¼ fp 710071 3. ffli!$k fp 7101291. shaanxi key laboratory of speech and image informationprocessing, school of computer science, northwe

10、stern polytech- nical university, xir an 710129 2. school of telecommunica- tions engineering, xidian university, xir an 710071 3. school of automation, northwestern polytechnical university, xir an710129, q kalman ø%, ¾.¾q %¾fl%, ¼$¾q¾ , fl½%¼%,%. ¾

11、q%, ¾q%k½%. %a%®qr%$ 2, %:¢fi, %½¼%$, fl%k½%½$ %f%, f.2) Ç%¼$%k. ½qr %$, fl¾fi ($ 2) $%. %a%.%,mean shift . $% (®a,ka,½) Ç$ (®fi Ç,%l), %¢½ ¼%. , %½, ½$¿%¾½,%½%¼$, %

12、½f¾. %, $l¾, %fikfi, qrfl%, %$, f%, $%, . flk, ø ½%, %½½f%.a%$%¿,Ç$%½, %$k. ¾l¾,qr%, $%¾fia, f$fiqr%, %¾fi, %fl %½%. fl, $%$fifik. elgammal 16 %fi$% %, %$% % (fi,$,¶), %$ fi$%$, %, q¾. cucchiara10 :$fi$% $. beleznai

13、 11 mean shift fi¾%$¾Ç, q¾% mean shift . %, lffl: cucchiara 10 ½fi¾k, fk½%. flk,¾fi%¿½%, fi½%, %½f%. beleznai 11 ½$%ø lÇ, f, f%Ǿ mean shift %$.$lfl¾, %$%¼¿fi. ¾ q , ½fi%¾, %$aÇ%,

14、f%k½%, q¼%, ǽ$%¾¾%¿. ½qr%,%¼% þ%fi$, ½f%$½.$%p®f: ø 1 ;$% ÷ ø 2 ;$%¾q ; ø 3 ;Ç%; ø 4 ;$; ø 5 ;%.1 k 3 : 1) ø%;2) ¾q; 3) Ç%¿. ¼® 1 . ½pfifi,ø%$¾, fifi

15、:, :%k%k %, ¾%¾q. $qr%, ¾, q½ $qr%, ½ fi%¾q, Ç% , ¿$%. 1 Ç%fifig. 1 greedy searching based multiple object tracking and occlusion handling algorithm3 : Ç%fi3772 ¾q2.1 %ø (background subtraction)1722%f%, $ %pø%½$%, ø½,%,&

16、#174;fi, flfi$%f. ø%®¼%$%ø%. p½%ø%$,½, ,¾%17 ,%,a f tt %a d %$%½a c f :v+n u+n1.d(u, v) =f tt (x, y)(2n + 1)2y=vn x=un.1,q d(u, v) tc0,¼f =(3)$, tc = 0.1. $fi% ½%k, ½½a½%½%k%ka½%, %¼$. ÷ i b $p$ø, ½a

17、(u, v) % (2m +1)×(2m +1)¢kfi%fi®f:n c c (u, v) =$18 .f¾½%$, ,½¾,%,k½h%$f.$ ¾ % (gaussian mixture model, gmm)17 ¾ø%, q$% $rø. gmm ®f:¿$fiafi% x $, %½®f k ½$:m.m.(b(u + u, v + v)i (u + u, v + v)v=m u=m.m.m.b(u + u, v

18、+ v)2 ×,v=m u=m.m.m.k.i (u + u, v + v)2(4)p (xt ) = . i,t xt , µi,t , .,(1)v=m u=mi=1i,t%, fi (4) $%¾%. $, $k% øf%, %$.2.2¾q ti , i = 1, · · · , n1 $%¶,fi$ i,t ø i $ t %, %$.k.i=1 i,t = 1, (xt , µi,t , i,t ) % x t %øi $.1(xt , µi,t , .

19、) =i,t×n.i,t1(2) 2 | 2 d , j = 1, · · · , n $j2%. ¶ t d %, $ 23 $%$%¾¾q. fl%fl: m c .1) m t d $%fi½%, $%¶®, ¢k,½%½. %fi%, %k¾q$%$, fl, k:fl®%, r m .t 1 2 (xt µi,t ) . (xt µi,t )i,t1e(2)fi$ i = 1, · · ·

20、; , k , n $ xt %, f%¼, p r, g, b a, q$¼%½, $ .i,t = i i . $ gmm $2$%$ø, ®$fifi%¾$%ø$, %k. flk, f%¼% xt , %½, %fi%k, ¾½fi%¾%.fi¾½½fik¾ fl, fi$%½, %¾%$: ø%, , f¾ $%, :%fifi%qr%k, :$, l. fl½l, $ gmm

21、 %l, , a%$. ½fia (u, v), (2n + 1) × (2n + 1) ¢sti djm (i, j) = c(5)sti + sdj$, sti dj$¶ ti dj %:, sti sdj $ ti dj %k, fi c %kp, %$ c = 2, m (i, j) 0, 1. ¶®fl, %¾$ f%$fl½, fl$%¿½.2) c m , %$, t d % c . % c %$yfi 0, c ¼®f:a) ½ m , ½

22、 ti , $¼%fi jmax , q c %½ 1:fi¾q%, ½%½%¾ z , g% p (zg |h ) $k. 2 $f%¿, $ h fi$ w ti i=1,··· ,w%¾q, zg fi$ ti i=1,··· ,w ¾q$%$¾, %k%¾q%$. h r a%, ¾ zg % rw , %jmax = arg max m (i, j),j = 1, · · ·

23、, n1j, fi½% z flgc (i, jmax ) = c (i, jmax ) + 1(6)%½%.b) ½fi m , ½%dj , $¼% jmax , q c %½ 1:jmax = arg max m (i, j),i = 1, · · · , n2ic (imax , j) = c (imax , j) + 1(7)c) c , ® 2 %yfi, yfi½%, q m$%fi$yfi 0, a) fl%; ® c $yfi 2, $n.y c %, &#

24、182; t d % 3 : 1) %¶2) $%¶ 3) $%fi%. ½$%¶, % ,%,ø% þ¾q; ½$fi%, % $,%þø. fl, ®$%¶$%qr, fi¾qf.¾q %6, 23 ¾q %fi, ½fl %k,½,¼%,%, ¾ fla%¾. %, ¾ q, ¾¿f ¾¼$%¿, qr%$ 2 %, ¢%

25、, .3 %yfþ¾q %, $;%$Ç%, ¼$%k½%, qÇ% . f%, %¼, flkk%. l;%¾q, fi¾q¢. fl%, k%fi%. 2 $%fi¿fig. 2 multiple objects location in a merged foreground¾%½¾ z g , ¿$%: % vi i=1,··· ,w , %¼%. vi $, $%¼%. ti $%vi =

26、(8) t i¿fi¢%¾g , %$fi%fi½¾fi:z z 1 = arg max vi ,i 1, · · · , wi2 = arg max v ,i 1, · · · , w, v / v z ii1i(9).z = arg max vi ,i 1, · · · , w,kivi / v j j=1,··· ,k1®% vi 1, % p (zi |h )fi$, %¼%, vi , fl% p

27、 (zi |h ) %¼. l½, ti¼$qr$%fl%k%, ti % p (zi |h ) % vi $fl, fl, $¿%, q%$, f%½$½%¾fi¿:p (z 1 |h ) = max p (zi |h )p (z |h, z ) = max p (z |h, z )21i13 : Ç%fi379fi$, p (i (x)|ti ) fi i (x) ti %$%.fi (16) %, ½% %, ¼%$½% fi. ½½¿%&

28、#189;½½. %fi (16) %$y.p (z |h, z , · · · , z ) =k1k1max p (z |h, z , · · · , z )(10)i1k1fi$ i 1, · · · , w, zi / z j=1,··· ,k1 . j$a, ti % tj , fi (10) fi$, q%fi:¿%¾ z 1 , · · · , zk1 %, fl%, $fi¼%,ff

29、iq$k¼%¾.f¾, h $%fifl¾:p (z |h ) · · · p (z |h, z , · · · , z ) = p (z |h )1w1w1g(11)fi (10) fi (11) $, % p (zg |h )$k%. %h $%¾ z 1 , · · · , zk1 f%fi¾ xg+$k% z , Ç%, ¾$%fi¾ x g , qfi (16) $:g p (i (x)| ti )p (t

30、i ) % z ½%$%:1,x x wg . p (i (x)|t )p (t )1 = arg max p (zi |h ),i = 1, · · · , w(12)z s sis=kp (ti |i (x) =fi z , $k% p (i (x)| ti )p (ti ) (x), x1fi z :x +wgk .p (i (x)|ts )p (ts )s=kk = arg max p (zi |h, z1 , z2 , · · · , zk1 )(13)z i(17)$, i = 1, · ·

31、· , w, zi / z j=1,··· ,k1 . f½ (x) 0, 1, %f%fi, %¼fifi%. 3 $Ǽ. $q r%, ½fi%¾q h , ¾ q%, ¢ qr%,½. ¿%, $%¿%, fi (14),(15) (17) ti %, q%¿$, ¼%fifij% p (zi |h, z , · · · , z ) , ti1k1%k zi h l$%, q%. $%:p

32、 (zi |h, z , · · · , z ) = max(p (zi |fxc ), xc h1k1(14)$a xc %k zi ffxc%. % p (zi |fxc ) fi$f ti fxc %. ½, f½%½, $ fxc $fi% p (zi |fxc ):+¾ xg $, ½¾q¾$%fi¾¾. l¼, fi$%¿.4q$, vc+ flqf%fi$fi. $fi intel core2 cpu 1.66 ghz ø, 

33、62; 2 g. ibm ¢fi$fi24 %fi, q½ 25 $%½¾½.4.1%½¼, ½f 3 ¾:1) %fi¾½ ;1.xk fxcp (zi |fxc ) = zwp (ti |i (x)(15)· zhfi$, i (x) fi$ xk %fifi%, zw zh$ zi %. fi i (x) ti % p (ti |i (x) $, p (ti |i (x) %¾%. qr%$½%¾, f¾k%½ p (t

34、i |i (x), ½fi, h ¢$¾$¾¿%¾ p (ti |i (x): p (i (x)| ti )p (ti ) p (ti |i (x) =(16)w. p (i (x)|ts )p (ts )s=k 3 Ǽfig. 3 flowchart of greedy searching algorithmfp2) k%½3) %½.fi¾$i¿, , fl$k% fi, ¢%, q½ pets2006 $ 25 % 9 %½¾

35、, %®f:false positive rate (fpr) =(18)fp + tn$, tp, tn, fp, fn $ true positive, truenegative, false positive, false negative $%, tg (total ground truth) %$%, tf (total frame) %. k%, $,%½. f¿ %, $¿$%: (occlusion error rate, oer), qr%fl:tptgtracker detection rate (trdr) =fpfalse ala

36、 rate (far) =fptp% =(19)detection rate (dr) =qr%tp + fntn4.2%½¾, kp%$fi, % h½r$%. fl, ¾½¼$fi½%fi¾. ½ % fl fi pets,ibm % ¢ fi24 , % caviar fi26 , ¾ % etiseo27 . ibm fi$fispecificity =fp + tntp + tnaccuracy =tftppositive prediction (pp) =tp + fptn

37、negative prediction (np) =fn + tnfnfalse negative rate (fnr) =fn + tp3 : Ç%fi381$, fl, $fi½Ç%¾.ibm %¼, fl, ½ 10 ibm ¢% ,¾$i¿, r% (ground truth). ¿%, ½, k $, qǼ%, ¿%fi$. $i¿f 10¾ 7 443 , $ 3 085 , qr 64 . 4 $ 10 $i¿

38、%.$, l. 6 (c) 6 (d) $, fi¾½% gmm %$ $%: ( 6 (c) 6 (d) $), flk, kfi%h$ ( 6 (c) 6 (d) $½$). 6 (e) 6 (f ) $%, ¾½a¼%, fi¾½½¾½, $%¼%$. 4 ibm ¢fi$ 10 $i½%fig. 4 hand labeled ground truth trajectory of ibmindoor surveillance video databa

39、se%, fi$¼% , ¾fl, q fl%¼, % tp,tn,fp,fn, %fi (18) (19) $. 5 øf% (ø 1 : p; ø 2 : gmm ; ø 3 : $)fig. 5 moving foreground segmentation results under similar background (the first row shows the input video, the second row displays the gmm results, and the third row dis

40、plays our results)4.3ø%$ ibm ¢fi, øfl½ø 2.1 ;¾, q ¾ø%fl. fi%fi%, 9 × 9 %d, 0.9. ½ ibm fi%$, ½p 320 × 240 %fifi, % 15 /.ø%k. 5 $øf%. k½, gmm f$ fia ( 5 ø 2 ), $¼ %$, fl%¿½. $½a%, y,k$, $%f½%, % (

41、5 ø 3 ). 6 $¢¼%$ ø%. $%, k,¼f$. %, :¢%fifi%qrfl%k, ¶®%fi¾½:(b) ø(b) background image(a) p(a) input image(d) gmm (d) gmm foreground image(c) gmm (c) gmm segmentation result(f ) $(f ) our foreground image(e) $(e) our segmentation result 6fig. 6,&#

42、248;f%moving foreground segmentation results under cast shadow and similar background4.4$, ®,mean shift %qr.$Ç%, %$¿$% 1 , fi (17)$¾q¢fi%, q 2 %$%½¾¿. ½%¼%$, fl¼$fi$fl%¾ ( 7 (c) $ø 3 fi), f%ya%$%, ½% ( 7 (c) $ø 4 fi). 7 $ 3 f

43、l$%. fl%, ¾q %6, 23 ¾. $¼, Ç, $¼$k (7 (a) (c) $ø 2 fiø 3 fi). 7 (c) $, 2%fl ( 7 (c) $ø 3 fi), kqr$%, fl% 7 fl$experiment results of two people tracking through occlusionfig. 7 8 $experiment results of three-people tracking through occlusionfig. 83 : Ç%fi3

44、83 8 $ 3 $f%. $ø 1 $p, ø 2 $ %. %fi, $ %qra, $%$fi$¼% 3 %¾ ( 8 $ #180, #222). 3 %¾q%, $%, ¾q %qr. $ Ç, ¼$k¿$ 3 % ( 8 $ #180, #222), q 3 $ ( 8 $ #204, #240). 25 fi (18) $%½ ¾½. 9 $½ ibm fi$% 10 , ¾ 7 443 %½ . ½fi, $f%: (f

45、alse negative rate, fnr) 0.027 (9), $%øf½%. %¼, %¾fi, f% ; ¼%, n $ m (m < n ) %, fø%$ . fi% (false positive rate, fpr) 0.077, , ibm fi$ fl¾, 10 fifi$¾qr64 , $f 50 , 0.22. flk, Ç, $%½, ½fi% fi 10 /.%, ¼%, Ç$½¾%¿. $, $i

46、¿% ibm ¢fi$fi½½¾ , ½f%$½. ¾%$,$%¾f, fi½¾% %, %p, % f%½.references1 senior a, hampapur a, tian y l, brown l, pankanti s, bolle r. appearance models for occlusion handling. image and vision computing, 2006, 24(11): 123312432 cucchiara r, grana c, tardini g, vezzani r. probabilistic people tracking for occlusion handling. in: pro

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论