常见电压比较器分析比较Word版_第1页
常见电压比较器分析比较Word版_第2页
常见电压比较器分析比较Word版_第3页
常见电压比较器分析比较Word版_第4页
常见电压比较器分析比较Word版_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、传播优秀word版文档 ,希望对您有帮助,可双击去除!常见电压比较器分析比较电压比较器通常由集成运放构成,与普通运放电路不同的是,比较器中的集成运放大多处于开环或正反馈的状态。只要在两个输入端加一个很小的信号,运放就会进入非线性区,属于集成运放的非线性应用范围。在分析比较器时,虚断路原则仍成立,虚短及虚地等概念仅在判断临界情况时才适应。一、零电平比较器(过零比较器) 电压比较器是将一个模拟输入信号ui与一个固定的参考电压ur进行比较和鉴别的电路。 参考电压为零的比较器称为零电平比较器。按输入方式的不同可分为反相输入和同相输入两种零电位比较器,如图1(a)、(b)所示 2011-12-22 11

2、:50:16 上传下载附件 (12.6 kb) 过零比较器 图1 过零比较器 (a)反相输入;(b)同相输入 通常用阈值电压和传输特性来描述比较器的工作特性。 阈值电压(又称门槛电平)是使比较器输出电压发生跳变时的输入电压值,简称为阈值,用符号uth表示。 估算阈值主要应抓住输入信号使输出电压发生跳变时的临界条件。这个临界条件是集成运放两个输入端的电位相等(两个输入端的电流也视为零),即u+=u。对于图1(a)电路,u=ui, u+=0, uth=0。 传输特性是比较器的输出电压uo与输入电压ui在平面直角坐标上的关系。 画传输特性的一般步骤是:先求阈值,再根据电压比较器的具体电路,分析在输入

3、电压由最低变到最高(正向过程)和输入电压由最高到最低(负向过程)两种情况下,输出电压的变化规律,然后画出传输特性。二、任意电平比较器(俘零比较器) 将零电平传播优秀word版文档 ,希望对您有帮助,可双击去除!比较器中的接地端改接为一个参考电压ur(设为直流电压),由于ur的大小和极性均可调整,电路成为任意电平比较器或称俘零比较器。2011-12-22 11:50:16 上传下载附件 (10.48 kb) 图2 任意电平比较器及传输特性 (a)任意电平比较器;(b)传输特性 2011-12-22 11:50:16 上传下载附件 (12.79 kb) 图3 电平检测比较器信传输特性 (a)电平检

4、测比较器;(b)传输特性 电平电压比较器结构简单,灵敏度高,但它的抗干扰能力差。也就是说,如果输入信号因干扰在阈值附近变化时,输出电压将在高、低两个电平之间反复地跳变,可能使输出状态产生误动作。为了提高电压比较器的抗干扰能力,下面介绍有两个不同阈值的滞回电压比较器。三、滞回电压比较器 滞回比较器又称施密特触发器,迟滞比较器。这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。 滞回传播优秀word版文档 ,希望对您有帮助,可双击去除!比较器也有反相输入和同相输入两种方式。 ur是某一固定电压,改变ur值能改变阈值及回差大小。以图4(a

5、)所示的反相滞回比较器为例,计算阈值并画出传输特性2011-12-22 11:50:16 上传下载附件 (24.1 kb) 图4 滞回比较器及其传输特性 (a)反相输入;(b)同相输入 1,正向过程 正向过程的阈值为 2011-12-22 11:50:19 上传下载附件 (5.22 kb) 形成电压传输特性的abcd段 2,负向过程 负向过程的阈值为 传播优秀word版文档 ,希望对您有帮助,可双击去除!2011-12-22 11:50:20 上传下载附件 (5.29 kb) 形成电压传输特性上defa段。由于它与磁滞回线形状相似,故称之为滞回电压比较器。利用求阈值的临界条件和叠加原理方法,不

6、难计算出图4(b)所示的同相滞回比较器的两个阈值 2011-12-22 11:50:20 上传下载附件 (5.88 kb) 两个阈值的差值uth=uth1uth2称为回差。 由上分析可知,改变r2值可改变回差大小,调整ur可改变uth1和uth2,但不影响回差大小。即滞回比较器的传输特性将平行右移或左移,滞回曲线宽度不变。 2011-12-22 11:50:22 上传下载附件 (10.72 kb) 图5 比较器的波形变换 (a)输入波形;(b)输出波形 例如,滞回比较器的传输特性和输入电压的波形如图6(a)、(b)所示。根据传输特性和两个阈值(uth12v, uth2=2v),可画出输出电压u

7、o的波形,如图6(c)所示。从图(c)可见,ui在uth1与uth2之间变化,不会引起uo的跳变。但回差也导致了输出电压的滞后现象,使电平鉴别产生误差。传播优秀word版文档 ,希望对您有帮助,可双击去除!2011-12-22 11:50:22 上传下载附件 (18.78 kb) 图6 说明滞回比较器抗干扰能力强的图 (a)已知传输特性;(b)已知ui 波形; (c)根据传输特性和ui波形画出的uo波形 四、窗口电压比较器电平比较器和滞回比较器有一个共同特点,即ui单方向变化(正向过程或负向过程)时,uo只跳变一次。只能检测一个输入信号的电平,这种比较器称为单限比较器。 双限比较器又称窗口比较

8、器。它的特点是输入信号单方向变化(例如ui 从足够低单调升高到足够高),可使输出电压uo跳变两次,其传输特性如图7(b)所示,它形似窗口,称为窗口比较器。窗口比较器提供了两个阈值和两种输出稳定状态可用来判断ui 是否在某两个电平之间。传播优秀word版文档 ,希望对您有帮助,可双击去除!2011-12-22 11:50:23 上传下载附件 (14.24 kb) 图7 窗口比较器电路及传输特性 (a)窗口比较器;(b)传输特性电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于v/f变换电路、a/d变换电路、高速采样电路、电源电压监测电路、振荡器

9、及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。什么是电压比较器简单地说, 电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+” 端) 及反相输入端(“-”端),有一个输出端vout(输出电平信号)。另外有电源v+及地(这是个单电源比较器),同相端输入电压va,反相端输入vb。va和vb的变化如图1(b)所示。在时间0t1时,vavb;在t1t2时,vbva;在t2t3时,vavb。在这种情况下,vout的输出如图1(

10、c)所示:vavb时,vout输出高电平(饱和输出);vbva时,vout输出低电平。根据输出电平的高低便可知道哪个电压大。传播优秀word版文档 ,希望对您有帮助,可双击去除!2011-8-3 09:55:16 上传下载附件 (9 kb) 如果把va输入到反相端,vb输入到同相端,va及vb的电压变化仍然如图1(b)所示,则vout输出如图1(d)所示。与图1(c)比较,其输出电平倒了一下。输出电平变化与va、vb的输入端有关。图2(a)是双电源(正负电源)供电的比较器。如果它的va、vb输入电压如图1(b)那样,它的输出特性如图2(b)所示。vbva时,vout输出饱和负电压。2011-8

11、-3 09:55:16 上传下载附件 (7.53 kb) 传播优秀word版文档 ,希望对您有帮助,可双击去除!如果输入电压va与某一个固定不变的电压vb相比较,如图3(a)所示。此vb称为参考电压、基准电压或阈值电压。如果这参考电压是0v(地电平),如图3(b)所示,它一般用作过零检测。2011-8-3 09:55:16 上传下载附件 (5.84 kb) 比较器的工作原理比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。图4(a)由运算放大器组成的差分放大器电路,输入电压va经分压器r2、r3分压后接在

12、同相端,vb通过输入电阻r1接在反相端,rf为反馈电阻,若不考虑输入失调电压,则其输出电压vout与va、vb及4个电阻的关系式为:vout=(1+rf/r1)r3/(r2+r3)va-(rf/r1)vb。若r1=r2,r3=rf,则vout=rf/r1(va-vb),rf/r1为放大器的增益。当r1=r2=0(相当于r1、r2短路),r3=rf=(相当于r3、rf开路)时,vout=。增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。2011-

13、8-3 09:55:16 上传下载附件 (6.41 kb) 传播优秀word版文档 ,希望对您有帮助,可双击去除!从图4中可以看出,比较器电路就是一个运算放大器电路处于开环状态的差分放大器电路。同相放大器电路如图5所示。如果图5中rf=,r1=0时,它就变成与图3(b)一样的比较器电路了。图5中的vin相当于图3(b)中的va。2011-8-3 09:55:16 上传下载附件 (6.49 kb) 比较器与运放的差别运放可以做比较器电路,但性能较好的比较器比通用运放的开环增益更高,输入失调电压更小,共模输入电压范围更大,压摆率较高(使比较器响应速度更快)。另外,比较器的输出级常用集电极开路结构,

14、如图6所示,它外部需要接一个上拉电阻或者直接驱动不同电源电压的负载,应用上更加灵活。但也有一些比较器为互补输出,无需上拉电阻。2011-8-3 09:55:16 上传下载附件 (8.14 kb) 这里顺便要指出的是,比较器电路本身也有技术指标要求,如精度、响应速度、传播延迟时间、灵敏度等,大部分参数与运放的参数相同。在要求不高时可采用通用运放来作比较器电路。如在a/d变换器电路中要求采用精密比较器电路。由于比较器与运放的内部结构基本相同,其大部分参数(电特性参数)与运放的参数项基本一样(如输入失调电压、输入失调电流、输入偏置电流等)。比较器典型应用电路这里举两个简单的比较器电路为例来说明其应用

15、。1.散热风扇自动控制电路一些大功率器件或模块在工作时会产生较多热量使温度升高,一般采用散热片并用风扇来冷却以保证正常工作。这里介绍一种极简单的温度控制电路,如图7所示。负温度系数(ntc)热敏电阻rt粘贴在散热片上检测功率器件的温度(散热片上的温度要比器件的温度略低一些),当5v电压加在rt及r1电阻上时,在a点有一个电压va。当散热片上的温度上升时,则热敏电阻rt的阻值下降,使va上升。rt的温度特性如图8所示。它的电阻与温度变化曲线虽然线性度并不好,但是它是单值函数(即温度一定时,其阻值也是一定的单值)。如果我们设定在80时应接通散热风扇,这80即设定的阈值温度tth,在特性曲线上可找到

16、在80时对应的rt的阻值。r1的阻值是不变的(它安装在电路板上,在环境温度变化不大时可认为r1值不变),则可以计算出在80时的va值。传播优秀word版文档 ,希望对您有帮助,可双击去除!2011-8-3 09:55:16 上传下载附件 (10.01 kb) 2011-8-3 09:55:16 上传下载附件 (3.68 kb) r2与rp组成分压器,当5v电源电压是稳定电压时(电压稳定性较好),调节rp可以改变vb的电压(电位器中心头的电压值)。vb值为比较器设定的阈值电压,称为vth。设计时希望散热片上的温度一旦超过80时接通散热风扇实现散热,则vth的值应等于80时的k值。一旦vavth,

17、则比较器输出低电平,继电器k吸合,散热风扇(直流电机)得电工作,使大功率器件降温。va、vth电压变化及比较器输出电压vout的特性如图9所示。这里要说清楚的是在va开始大于vth时,风扇工作,但散热体有较大的热量,要经过一定时问才能把温度降到80以下。2011-8-3 09:55:16 上传下载附件 (9.78 kb) 从图7可看出,要改变阈值温度tth十分方便,只要相应地改变vth值即可。vth值增大,tth增大;反之亦然,调整十分方便。只要rt确定,rt的温度特性确定,则r1、r2、rp可方便求出(设流过rt、r1及r2、rp的电流各为0.10.5ma)。2.窗口比较器窗口比较器传播优秀

18、word版文档 ,希望对您有帮助,可双击去除!常用两个比较器组成(双比较器),它有两个阈值电压vthh(高阈值电压)及vthl(低阈值电压),与vthh及vthl比较的电压va输入两个比较器。若vthlvavthh,vout输出高电平;若vavthl,vavthh,则vout输出低电平,如图10所示。图10是一个冰箱报警器电路。冰箱正常工作温度设为05,(0到5是一个“窗口”),在此温度范围时比较器输出高电平(表示温度正常);若冰箱温度低于0v或高于5,则比较器输出低电平,此低电平信号电压输入微控制器(c)作报警信号。2011-8-3 09:55:16 上传下载附件 (8.16 kb) 温度传感器采用ntc热敏电阻rt,已知rt在0时阻值为333.1k;5时阻值为258.3k,则按1.5v工作电压及流过r1、rt的电流约1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论