数学七上《有理数的乘方》ppt课件_第1页
数学七上《有理数的乘方》ppt课件_第2页
数学七上《有理数的乘方》ppt课件_第3页
数学七上《有理数的乘方》ppt课件_第4页
数学七上《有理数的乘方》ppt课件_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 相传,古印度的舍罕王打算重赏国际象棋的发明者相传,古印度的舍罕王打算重赏国际象棋的发明者班班达依尔于是,这位宰达依尔于是,这位宰相跪在国王面前说:相跪在国王面前说:“陛下,请您在这张棋盘的第一个小格内,赏给我一粒麦子;在陛下,请您在这张棋盘的第一个小格内,赏给我一粒麦子;在第二个小格内给两粒,第三格内给四粒,照这样下去,每一小格都比前一小格加一第二个小格内给两粒,第三格内给四粒,照这样下去,每一小格都比前一小格加一倍陛下啊,把这样摆满棋盘倍陛下啊,把这样摆满棋盘国际象棋与麦粒的故事国际象棋与麦粒的故事 1;.上所有上所有64格的麦粒,都赏给您的仆人罢!格的麦粒,都赏给您的仆人罢!”国王国王慷

2、慨地答应了宰相的要求,他下令将一袋麦子拿到宝座前计数麦粒的工作开始慷慨地答应了宰相的要求,他下令将一袋麦子拿到宝座前计数麦粒的工作开始了第一格内放一粒,第二格两粒,第三格四粒了第一格内放一粒,第二格两粒,第三格四粒还没到第二十格,袋子已经空还没到第二十格,袋子已经空了一袋又一袋的麦子被扛到国王面前来,但是,麦粒数一格接一格地增长得那么迅了一袋又一袋的麦子被扛到国王面前来,但是,麦粒数一格接一格地增长得那么迅速,很快就可以看出,即使拿来全印度的小麦,国王也无法兑现他对宰相许下的诺言!速,很快就可以看出,即使拿来全印度的小麦,国王也无法兑现他对宰相许下的诺言!这位聪明的宰相到底要求的是多少麦粒呢?

3、这位聪明的宰相到底要求的是多少麦粒呢? 2;. 在现实背景中,理解有理数乘方的意义能进行有理数的乘方运算,并会用在现实背景中,理解有理数乘方的意义能进行有理数的乘方运算,并会用计算器进行乘方运算掌握幂的符号法则计算器进行乘方运算掌握幂的符号法则.3;.经历经历“做数学做数学”和和“用数学用数学”的过程,感受数学的奇妙性,领会重要的数的过程,感受数学的奇妙性,领会重要的数学建模思想、归纳思想,形成数感、符号感,发展抽象思维学建模思想、归纳思想,形成数感、符号感,发展抽象思维 4;.情感态度与价值观情感态度与价值观认识数学与生活的密切联系,体验数学活动充满着探索与创造,感受数学的严谨性,认识数学与

4、生活的密切联系,体验数学活动充满着探索与创造,感受数学的严谨性,提高数学素养通过参与数学学习活动,对数学有好奇心和求知欲,形成主动学习态度,提高数学素养通过参与数学学习活动,对数学有好奇心和求知欲,形成主动学习态度,培养科学探索精神培养科学探索精神5;.有理数乘方的意义有理数乘方的意义 幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算负数的乘方运算 6;.(1)边长为)边长为6的正方形的面积记为:的正方形的面积记为:(2)棱长为)棱长为6的正方体的体积可记为:的正方体的体积可记为:6666

5、666 67;.若正方形的边长为若正方形的边长为a,则面积是多少则面积是多少?若正方体的棱长为若正方体的棱长为a,则正方体的体积为多少,则正方体的体积为多少?aa aaa aa8;. 细胞分裂示意图细胞分裂示意图2222229;. 1 1个细胞个细胞3030分钟后分裂成分钟后分裂成2 2个,经过个,经过5 5小时,这种细胞由小时,这种细胞由1 1个能分裂成多少个?个能分裂成多少个?222210个个210;.22 2210个个 记作记作62,读作,读作6的平方(或二次方)的平方(或二次方) 66666aa aaa 记作记作210,读作,读作2的的10次方次方.记作记作a3,读作,读作a的立方(或

6、三次方)的立方(或三次方).记作记作a2,读作,读作a的平方(或二次方)的平方(或二次方)记作记作63,读作,读作6的立方(或三次方)的立方(或三次方)11;.一般地,一般地,n个相同因数个相同因数a相乘,即:相乘,即:记作:记作:an,读作,读作a的的n次方次方.aa a an个个 12;.求求n n个相同因数个相同因数a a的积的运算叫做乘方的积的运算叫做乘方. .即即:an=aa a an个个 13;.an底数底数(任意有理数)(任意有理数)指数指数幂幂 an也读作也读作a的的n次幂次幂 14;.记作记作 aaaaaaaaaaaa n个个记作记作 3a记作记作记作记作 a的平方的平方a的

7、的2次幂次幂a的二次方的二次方a的立方的立方a的的3次幂次幂a的三次方的三次方a的的4次幂次幂a的四次方的四次方a的的n次幂次幂a的的n次方次方读作读作读作读作读作读作读作读作na4a2a15;.(1) 34 读做读做_,其中底数是,其中底数是_,指数是,指数是_,表示为,表示为_,结果为,结果为_.(2) 读做读做_,其中底数是,其中底数是_,指数是,指数是_,表示为,表示为_,结果为,结果为_.334 的的三三次次方方343 34 43的的4次幂次幂33333813334442727646443练一练练一练16;. 一个数可以看作这个数本身的一次方一个数可以看作这个数本身的一次方a的底数,

8、指数各是多少?的底数,指数各是多少? a的底数是的底数是a,指数是,指数是117;.(1)71有意义吗?有意义吗?(2)12000与与15有什么异同?有什么异同?(3)02000有意义吗?有意义吗?18;.0的任何次幂等于零;1的任何次幂等于119;.(1)()(5)3 ; (2)()(1)4;(3) ; (4)()(3)5;(5)43 ; (6)34 .212观察各题的结果,你能发现什么规律?观察各题的结果,你能发现什么规律?正数的任何次幂是正数;负数的奇次幂是负数,负数的偶次幂是正数. 计算计算 :12564243811420;.223355与与(4)2与与42 观察下面两个式子有什么不同

9、?观察下面两个式子有什么不同?(4)2表示表示4的平方,的平方,42表示表示4的平方的相反数的平方的相反数.表表示示的的平平方方表表示示再再除除以以2335523235.5当底数是负数或分数时当底数是负数或分数时,底数一定要加底数一定要加上括号上括号.21;.(1)()(1)5_,(2)()(1)8_,(3)12000 _,(4)02005_,(5)()(10)4_,(6)()(5)3_.口算下列各题:口算下列各题:111010 00012522;.例例1:计算:计算:34(1)5(2)6 34(1)5555125(2)44444256.; 解:解:23;.与与个个?那那么么与与呢呢?6354

10、114543哪哪一一大大5463444444102455 5 5 5625111111114444444409611111.333327 ;4554.6311.4324;.一个大于1的正数作底数,指数越大,乘方的结果越大;而一个小于1的正数作底数,指数越大,乘方的结果就越小 25;.有理数的混合运算应注意的运算顺序:有理数的混合运算应注意的运算顺序:(1)先乘方)先乘方,再乘除,最后加减;再乘除,最后加减;(2)同级运算,从左到右进行;)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行行26;

11、.na指数指数底数底数幂幂 负数的奇次幂是负数,负数的偶次幂是正数负数的奇次幂是负数,负数的偶次幂是正数 正正数的任何次幂都是正数,数的任何次幂都是正数,0的任何次幂都是的任何次幂都是027;.1把下列各式写成乘方运算的形式,并指出底数,指数各是多少?把下列各式写成乘方运算的形式,并指出底数,指数各是多少? ( ).5.5.5.5.5 ,( ),3333( )(1000).122222111123 a aa1000( ).5( )( ).34511223; a(2)底数分别为:)底数分别为:(3)指数分别为:)指数分别为:5,4,1000.1.2-2. 5,-2. 5,-,-,a28;.2如果一个数的偶次幂是正数,那么这个数是(如果一个数的偶次幂是正数,那么这个数是( )A正数正数 B负数负数 C有理数有理数 D非非0数数3如果有理数如果有理数a满足满足a2a,则则a为(为( ) A绝

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论