2019年江苏省高考数学试卷_第1页
2019年江苏省高考数学试卷_第2页
2019年江苏省高考数学试卷_第3页
2019年江苏省高考数学试卷_第4页
2019年江苏省高考数学试卷_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2019年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1已知集合,0,1,则2已知复数的实部为0,其中为虚数单位,则实数的值是3如图是一个算法流程图,则输出的的值是4函数的定义域是5已知一组数据6,7,8,8,9,10,则该组数据的方差是6从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是7在平面直角坐标系中,若双曲线经过点,则该双曲线的渐近线方程是8已知数列是等差数列,是其前项和若,则的值是9如图,长方体的体积是120,为的中点,则三棱锥的体积是10在平面直角坐标系中,是曲线上的一个动点

2、,则点到直线的距离的最小值是11在平面直角坐标系中,点在曲线上,且该曲线在点处的切线经过点,为自然对数的底数),则点的坐标是12如图,在中,是的中点,在边上,与交于点若,则的值是13已知,则的值是14设,是定义在上的两个周期函数,的周期为4,的周期为2,且是奇函数当,时,其中若在区间,上,关于的方程有8个不同的实数根,则的取值范围是二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15(14分)在中,角,的对边分别为,(1)若,求的值;(2)若,求的值16(14分)如图,在直三棱柱中,分别为,的中点,求证:(1)平面;(2)17(14分

3、)如图,在平面直角坐标系中,椭圆的焦点为,过作轴的垂线,在轴的上方,1与圆交于点,与椭圆交于点连结并延长交圆于点,连结交椭圆于点,连结已知(1)求椭圆的标准方程;(2)求点的坐标18(16分)如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥是圆的直径),规划在公路上选两个点、,并修建两段直线型道路、,规划要求:线段、上的所有点到点的距离均不小于圆的半径已知点、到直线的距离分别为和、为垂足),测得,(单位:百米)(1)若道路与桥垂直,求道路的长;(2)在规划要求下,和中能否有一个点选在处?并说明理由;(3)在规划要求下,若道路和的长度均为(单位:百米),求当最小时,、两点间的距

4、离19(16分)设函数,为的导函数(1)若,(4),求的值;(2)若,且和的零点均在集合,1,中,求的极小值;(3)若,且的极大值为,求证:20(16分)定义首项为1且公比为正数的等比数列为“数列”(1)已知等比数列满足:,求证:数列为“数列”;(2)已知数列满足:,其中为数列的前项和求数列的通项公式;设为正整数,若存在“数列” ,对任意正整数,当时,都有成立,求的最大值【选做题】本题包括a、b、c三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.a.选修4-2:矩阵与变换(本小题满分10分)21(10分)已知矩阵(1

5、)求;(2)求矩阵的特征值b.选修4-4:坐标系与参数方程(本小题满分10分)22(10分)在极坐标系中,已知两点,直线1的方程为(1)求,两点间的距离;(2)求点到直线的距离c.选修4-5:不等式选讲(本小题满分10分)23设,解不等式【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24(10分)设,已知(1)求的值;(2)设,其中,求的值25(10分)在平面直角坐标系中,设点集,令从集合中任取两个不同的点,用随机变量表示它们之间的距离(1)当时,求的概率分布;(2)对给定的正整数,求概率(用表示)2019年江苏省高考

6、数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1已知集合,0,1,则,【思路分析】直接利用交集运算得答案【解析】:,0,1,0,1,故答案为:,【归纳与总结】本题考查交集及其运算,是基础题2已知复数的实部为0,其中为虚数单位,则实数的值是2【思路分析】利用复数代数形式的乘除运算化简,再由实部为0求的值【解析】:的实部为0,即故答案为:2【归纳与总结】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题3如图是一个算法流程图,则输出的的值是5【思路分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量的值,

7、模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【解析】:模拟程序的运行,可得,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,此时,满足条件,退出循环,输出的值为5故答案为:5【归纳与总结】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题4函数的定义域是,【思路分析】由根式内部的代数式大于等于0求解一元二次不等式得答案【解析】:由,得,解得:函数的定义域是,故答案为:,【归纳与总结】本题考查函数的定义域及其求法,考查一元二次不等式的解法,是基础题5已知一组数据6,7,8,8,9,10,则该组数据的方差是2【思路分析】

8、先求出一组数据6,7,8,9,10的平均数,由此能求出该组数据的方差【解析】:一组数据6,7,8,9,10的平均数为:,该组数据的方差为:故答案为:2【归纳与总结】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题6从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是【思路分析】基本事件总数,选出的2名同学中至少有1名女同学包含的基本事件个数,由此能求出选出的2名同学中至少有1名女同学的概率【解析】:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数,选出的2名同学中至少有1名女同学包含的基本事件个数

9、:,选出的2名同学中至少有1名女同学的概率是故答案为:【归纳与总结】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,是基础题7在平面直角坐标系中,若双曲线经过点,则该双曲线的渐近线方程是【思路分析】把已知点的坐标代入双曲线方程,求得,则双曲线的渐近线方程可求【解析】:双曲线经过点,解得,即又,该双曲线的渐近线方程是故答案为:【归纳与总结】本题考查双曲线的标准方程,考查双曲线的简单性质,是基础题8已知数列是等差数列,是其前项和若,则的值是16【思路分析】设等差数列的首项为,公差为,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前项和求得的

10、值【解析】:设等差数列的首项为,公差为,则,解得故答案为:16【归纳与总结】本题考查等差数列的通项公式,考查等差数列的前项和,是基础题9如图,长方体的体积是120,为的中点,则三棱锥的体积是10【思路分析】推导出,三棱锥的体积:,由此能求出结果【解析】:长方体的体积是120,为的中点,三棱锥的体积:故答案为:10【归纳与总结】本题考查三棱锥的体积的求法,考查长方体的结构特征、三棱锥的性质等基础知识,考查运算求解能力,考查数形结合思想,是中档题10在平面直角坐标系中,是曲线上的一个动点,则点到直线的距离的最小值是4【思路分析】利用导数求平行于的直线与曲线的切点,再由点到直线的距离公式求点到直线的

11、距离的最小值【解析】:由,得,设斜率为的直线与曲线切于,由,解得曲线上,点到直线的距离最小,最小值为故答案为:4【归纳与总结】本题考查利用导数研究过曲线上某点处的切线方程,考查点到直线距离公式的应用,是中档题11在平面直角坐标系中,点在曲线上,且该曲线在点处的切线经过点,为自然对数的底数),则点的坐标是【思路分析】设,利用导数求得曲线在处的切线方程,代入已知点的坐标求解即可【解析】:设,由,得,则该曲线在点处的切线方程为,切线经过点,即,则点坐标为故答案为:【归纳与总结】本题考查利用导数研究过曲线上某点处的切线方程,区分过点处与在点处的不同,是中档题12如图,在中,是的中点,在边上,与交于点若

12、,则的值是【思路分析】首先算出,然后用、表示出、,结合得,进一步可得结果【解析】:设,故答案为:【归纳与总结】本题考查向量的数量积的应用,考查向量的表示以及计算,考查计算能力13已知,则的值是【思路分析】由已知求得,分类利用万能公式求得,的值,展开两角和的正弦求的值【解析】:由,得,解得或当时,;当时,综上,的值是故答案为:【归纳与总结】本题考查三角函数的恒等变换与化简求值,考查两角和的三角函数及万能公式的应用,是基础题14设,是定义在上的两个周期函数,的周期为4,的周期为2,且是奇函数当,时,其中若在区间,上,关于的方程有8个不同的实数根,则的取值范围是,【思路分析】由已知函数解析式结合周期

13、性作出图象,数形结合得答案【解析】:作出函数与的图象如图,由图可知,函数与,仅有2个实数根;要使关于的方程有8个不同的实数根,则,与,的图象有2个不同交点,由到直线的距离为1,得,解得,两点,连线的斜率,即的取值范围为,故答案为:,【归纳与总结】本题考查函数零点的判定,考查分段函数的应用,体现了数形结合的解题思想方法,是中档题二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15(14分)在中,角,的对边分别为,(1)若,求的值;(2)若,求的值【思路分析】(1)由余弦定理得:,由此能求出的值(2)由,利用正弦定理得,再由,能求出,由此

14、利用诱导公式能求出的值【解析】:(1)在中,角,的对边分别为,由余弦定理得:,解得(2),由正弦定理得:,【归纳与总结】本题考查三角形边长、三角函数值的求法,考查正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识,考查推理能力与计算能力,属于中档题16(14分)如图,在直三棱柱中,分别为,的中点,求证:(1)平面;(2)【思路分析】(1)推导出,从而,由此能证明平面(2)推导出,从而平面,由此能证明【解答】证明:(1)在直三棱柱中,分别为,的中点,平面,平面,平面解:(2)在直三棱柱中,是的中点,又,平面,平面,【归纳与总结】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面

15、间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题17(14分)如图,在平面直角坐标系中,椭圆的焦点为,过作轴的垂线,在轴的上方,1与圆交于点,与椭圆交于点连结并延长交圆于点,连结交椭圆于点,连结已知(1)求椭圆的标准方程;(2)求点的坐标【思路分析】(1)由题意得到,然后求,再由求得,则椭圆方程可求;(2)求出的坐标,得到,写出的方程,与椭圆方程联立即可求得点的坐标【解析】:(1)如图,则,则,则椭圆方程为,取,得,则又,解得椭圆的标准方程为;(2)由(1)知,则,联立,得解得或(舍即点的坐标为【归纳与总结】本题考查直线与圆,圆与椭圆位置关系的应用,考查计算能力,证明是解答

16、该题的关键,是中档题18(16分)如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥是圆的直径),规划在公路上选两个点、,并修建两段直线型道路、,规划要求:线段、上的所有点到点的距离均不小于圆的半径已知点、到直线的距离分别为和、为垂足),测得,(单位:百米)(1)若道路与桥垂直,求道路的长;(2)在规划要求下,和中能否有一个点选在处?并说明理由;(3)在规划要求下,若道路和的长度均为(单位:百米),求当最小时,、两点间的距离【思路分析】(1)设与圆交于,连接,以为坐标原点,为轴,建立直角坐标系,则,设点,运用两直线垂直的条件:斜率之积为,求得的坐标,可得所求值;(2)当时,上的

17、所有点到原点的距离不小于圆的半径,设此时,运用两直线垂直的条件:斜率之积为,求得的坐标,即可得到结论;(3)设,则,结合条件,可得的最小值,由两点的距离公式,计算可得【解析】:设与圆交于,连接,为圆的直径,可得,即有,以为坐标原点,为轴,建立直角坐标系,则,(1)设点,则,即,解得,所以,;(2)当时,上的所有点到原点的距离不小于圆的半径,设此时,则,即,解得,由,在此范围内,不能满足,上所有点到的距离不小于圆的半径,所以,中不能有点选在点;(3)设,则,则,当最小时,【归纳与总结】本题考查直线和圆的位置关系,考查直线的斜率和两直线垂直的条件:斜率之积为,以及两点的距离公式,分析问题和解决问题

18、的能力,考查运算能力,属于中档题19(16分)设函数,为的导函数(1)若,(4),求的值;(2)若,且和的零点均在集合,1,中,求的极小值;(3)若,且的极大值为,求证:【思路分析】(1)由,可得,根据(4),可得,解得(2),设令,解得,或令,解得,或根据和的零点均在集合,1,中,通过分类讨论可得:只有,可得,可得:利用导数研究其单调性可得时,函数取得极小值(3),令解得:,可得时,取得极大值为,通过计算化简即可证明结论【解析】:(1),(4),解得(2),设令,解得,或令,解得,或和的零点均在集合,1,中,若:,则,舍去,则,舍去,则,舍去,则,舍去,则,舍去,则,因此,可得:可得时,函数

19、取得极小值,(1)(3)证明:,令解得:,可得时,取得极大值为,可得:,在,上单调递减,【归纳与总结】本题考查了利用导数研究函数的单调性、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题20(16分)定义首项为1且公比为正数的等比数列为“数列”(1)已知等比数列满足:,求证:数列为“数列”;(2)已知数列满足:,其中为数列的前项和求数列的通项公式;设为正整数,若存在“数列” ,对任意正整数,当时,都有成立,求的最大值【思路分析】(1)设等比数列的公比为,然后根据,列方程求解,在根据新定义判断即可;(2)求出,猜想,然后用数学归纳法证明;(3)设的公比为,将问题

20、转化为,然后构造函数,分别求解其最大值和最小值,最后解不等式,即可【解析】:(1)设等比数列的公比为,则由,得,数列首项为1且公比为正数即数列为“数列”;(2),当时,当时,当时,猜想,下面用数学归纳法证明;当时,满足,假设时,结论成立,即,则时,由,得,故时结论成立,根据可知,对任意的都成立故数列的通项公式为;设的公比为,存在“数列” ,对任意正整数,当时,都有成立,即对恒成立,当时,当时,当,两边取对数可得,对有解,即,令,则,当时,此时递增,当时,令,则,令,则,当时,即,在,上单调递减,即时,则,下面求解不等式,化简,得,令,则,由得,在,上单调递减,又由于(5),(6),存在使得,的

21、最大值为5,此时,【归纳与总结】本题考查了由递推公式求等比数列的通项公式和不等式恒成立,考查了数学归纳法和构造法,是数列、函数和不等式的综合性问题,属难题【选做题】本题包括a、b、c三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.a.选修4-2:矩阵与变换(本小题满分10分)21(10分)已知矩阵(1)求;(2)求矩阵的特征值【思路分析】(1)根据矩阵直接求解即可;(2)矩阵的特征多项式为,解方程即可【解析】:(1)(2)矩阵的特征多项式为:,令,则由方程,得或,矩阵的特征值为1或4【归纳与总结】本题考查了矩阵的运算

22、和特征值等基础知识,考查运算与求解能力,属基础题b.选修4-4:坐标系与参数方程(本小题满分10分)22(10分)在极坐标系中,已知两点,直线1的方程为(1)求,两点间的距离;(2)求点到直线的距离【思路分析】(1)设极点为,则由余弦定理可得,解出;(2)根据直线的方程和点的坐标可直接计算到直线的距离【解析】:(1)设极点为,则在中,由余弦定理,得,;(2)由直线1的方程,知直线过,倾斜角为,又,点到直线的距离为【归纳与总结】本题考查了在极坐标系下计算两点间的距离和点到直线的距离,属基础题c.选修4-5:不等式选讲(本小题满分10分)23设,解不等式【思路分析】对去绝对值,然后分别解不等式即可【解析】:,或或,或或,不等式的解集为或【归纳与总结】本题考查了绝对值不等式的解法,属基础题【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24(10分)设,已知(1)求的值;(2)设,其中,求的值【思路分析】(1)运用二项式定理,分别求得,结合组合数公式,解方程可得的值;(2)方法一、运用二项式定理,结合组合数公式求得,计算可得所求值;方法二、由于,求得,再由平方差公式,计算可得所求值【解析】:(1)由,可得,可得,解得;(2)方法一、,由于,可得,可得;方法二、,由于,可得,可得【归纳与总结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论