数值计算课后答案2_第1页
数值计算课后答案2_第2页
数值计算课后答案2_第3页
数值计算课后答案2_第4页
数值计算课后答案2_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-作者xxxx-日期xxxx数值计算课后答案2【精品文档】习 题 二 解 答1用二分法求方程x3-2x2-4x-7=0在区间3,4内的根,精确到10-3,即误差不超过。分析:精确到10-3与误差不超过10-3不同。解:因为f(3)-100,f(4)=90,所以,方程在区间3,4上有根。由有2n-11000,又为21010241000,所以n11,即只需要二分11次即可。列表讨论如下:nanbnxnf(xn)的符号134243485876717138329929311013211122x*x11=。指出:(1)注意精确度的不同表述。精确到10-3和误差不超过10-3是不同的。(2)在计算过程中按

2、规定精度保留小数,最后两次计算结果相同。如果计算过程中取4位小数,结果取3位,则如下表:nanbnxnf(xn)的符号1342434567891011(3)用秦九韶算法计算f(xn)比较简单。1*求方程x3-2x2-4x-7=0的隔根区间。解:令,则当时,有。函数单调区间列表分析如下:x(-,)2(2,+)y+00+y15因为,所以方程在区间上无根;因为,而函数在上单调增,函数值不可能变号,所以方程在该区间上无根;因为,函数在(2,+)上单调增,所以方程在该区间上最多有一个根,而(3)=-100,所以方程在区间(3,4)有一个根。所以,该方程有一个根,隔根区间是(3.4)。2证明在0,1内有一

3、个根,使用二分法求误差不大于的根,需要迭代多少次?分析:证明方程在指定区间内有一个根,就是证明相应的函数在指定区间有至少一个零点。解:令,因为,则,由零点定理,函数f(x)在0,1区间有一个根。 由有2n-110000,又为2101024,213819210000所以n15,即需要二分15次。指出:要证明的是有一个解而不是唯一解,因此不必讨论单调性。3试用迭代公式,求方程的根,要求精确到。分析:精确到即误差不超过解:令列表进行迭代如下:01-711.538463.7596421.29502-3456789101112131415指出:精确到可以从两个方面判定。第一,计算过程中取小数到位,最后两

4、个计算结果相同,终止计算。第二,计算过程中取小数到,当终止计算。本题采用第一种方法。4将一元非线性方程写成收敛的迭代公式,并求其在附近的根,要求精确到。解:改写为,则,设有在处,因为所以迭代法在的邻域内收敛。列表迭代如下:005107120693069此时。5为求方程在附近的一个根,设将方程改为下列等价形式,并建立相应的迭代公式:试分析每种迭代公式的收敛性,并取一种公式求出具有4位有效数字的近似值。解:(1)因为,所以迭代函数为,则,满足局部收敛性条件,所以迭代公式具有局部收敛性。(2)因为,所以迭代函数为,则,满足局部收敛性条件,所以迭代公式具有收敛性。(3)因为,所以迭代函数为,则,不满足

5、收敛性条件,所以迭代公式不具有收敛性。用迭代公式列表计算如下:015114442148031457414715146261468714648146791465101466111465所以,方程的近似根为。6设,应如何取C才能使迭代公式具有局部收敛性?解:设C为常数,因为,所以,要使迭代公式具有局部收敛性,需,此时即有,也即。即只要C取满足如上条件的常数,就可以使得迭代公式具有局部收敛性。指出:本题的一般形式为:设,应如何取C才能使迭代公式具有局部收敛性?显然,是迭代格式相应的迭代函数,因此该迭代格式要求解的方程是。也就是说,这是如何选择C,构造一个求解方程f(x)=0的收敛的迭代格式的问题。因

6、为,所以,要使迭代格式收敛,需解之得,即C与异号,且。下面的讨论利用了本题的特殊条件,求出了具体的结果:因为,所以当时,有,则,即函数的不动点为。而,根据局部收敛性定理,当时,迭代格式收敛到;当时,迭代格式收敛到。7用牛顿法求方程在初始值邻近的一个正根,要求。解: 因为所以有,相应的迭代公式为取x0=2为迭代的初始近似值。迭代的结果列表如下:k0123xk2因为,符合计算的精度要求,所以。8用牛顿法解方程,导出计算数c的倒数而不用除法的一种简单的迭代公式。用此公式求0.324的倒数,设初始值,要求计算有5位有效数字。解:对于方程,有,相应的迭代公式为。应用该迭代公式求0.324的倒数,列表计算

7、如下0313084230864330864所以。指出:如果将方程改写为等价的,则有,相应的迭代公式为无法展开迭代。9设a为已知数,试用牛顿法导出求的迭代公式,并求极限。解:设a为正实数,n为自然数,由牛顿法,方程的解为 此即求的迭代公式。由此,则 指出:本题中,表面上是的问题,但实际上却是的问题,才是极限过程中实际的变量。本质上。本题实际上是求极限由于讨论的是型不定式,且不定式的分母上有2次的“0”因子,因此两次应用罗必塔法则。解二:首先证明一个定理:定理:设,又设f(x)在的某个邻域内具有连续的二阶导数,则牛顿迭代法具有局部收敛性,且有。证明:因为所以因为f(x)在邻域内具有连续的二阶导数,

8、所以在邻域内连续,且由局部收敛性定理,牛顿迭代法具有局部收敛性。对求导,根据条件有 由收敛阶定理,若,则,牛顿迭代法二阶收敛,若,则,牛顿迭代法有更高的收敛阶。因为牛顿迭代法有二阶收敛性,所以。显然如果是方程f(x)=0的单根,则,且。此时,则,可见定理中的条件“”可以等价替换为“是方程f(x)=0的单根”对本题来说,是方程的单根,所以则。指出:应用分组分解法进行因式分解,分子、分母约去“0”因子,就可以按连续函数的极限性质求解了。10用快速弦截求方程在初始值邻近的实根(取,要求精确到)。解: 因为所以有,相应的迭代公式为取x0=2为迭代的初始近似值。迭代的结果列表如下:kxk xk-xk-1

9、f(xk)f(xk)- f(xk-1)021119218811318794418794因为,符合计算的精度要求,所以。指出:本教程所说快速弦截法是通常所说的弦截法(割线法),而它所说弦截法是通常的单点弦截法。11、分别用下列方法求方程在邻近的根,要求有三位有效数字。(1)用牛顿法,取;(2)用弦截法,取;(3)用快速弦截法,取。解:方程变形为,则。牛顿法、弦截法、快速弦截法公式分别为(1)牛顿法;(2)弦截法;(3)快速弦截法。取3位有效数字,分别计算得kxk牛顿法弦截法快速弦截法007850785078511591571572141133133313914013841391381405139

10、1396138139补充题(一)1、确定方程x5+x-100的根的个数,找出隔根区间。2、用二分法求方程f(x)=x32x-5=0在2,3的根的近似值,要求误差不超过0.005。3、用二分法求方程f(x)=x32x-5=0在2,3的根的近似值,要求误差不超过0.05。4、用二分法求方程的非零实近似根,使误差不超过102。5、分析方程的根的分布情况,并用二分法求正根的近似值,使误差不超过102。6、估计用二分法求方程f(x)=x34x2-10=0在1,2内的根的近似值,为使误差不超过105时所需要的二分次数。分析与解答1、令,显然,而且函数没有不可导点,所以,函数在区间上是单调增的,故方程最多有

11、一个根。因为,所以方程在(0,2)区间有一个根,(0,2)即为方程的隔根区间。2、因为f(2)=70,f(3)=280,实际上本方程在指定范围内无根。但如果不加判定,也可以计算出一个值来。所以,用二分法求方程的根必须先行判定。要特别注意的是,完整的二分法的过程是,第一步代入初值,第二步判断是否有解,第三步在有解的前提下求出解来。不进行判断就形式地套用二分法的过程是不可以的,同样地,如果因为无解就放弃讨论也是不正确的。3、因为f(2)=10,f(3)=160,所以方程在区间上有解。,所以,2n20,n=5。x*4、画出y=sinx和的曲线,可以看出,两条曲线除了原点外,在第一象限有且只有一个交点

12、。交点的横坐标介于1.5与2之间(显然,21.5,sin(2)=1,所以在2点,f(x)0,而当x2时,sinx1,所以在2点,f(x)0。5、画出y=sinx和的曲线,可以看出,两条曲线除了原点外,在第一象限有且只有一个交点。交点的横坐标介于1.8与1.9之间(根据图像,用计算器计算估计,当sinx的值从大于的值变为小于时,隔根区间就找到了)。要求x*xn0.01,可以求出用二分法计算的次数。在区间1.8,1.9上,因为所以,n=4。具体计算过程如下nanbnxnf(xn)的符号1234 所以,x*x4指出:确定求根区间和根的初始近似值,应用MATLAB工具,用交轨法是重要的途径,可以先确定

13、大致范围,再缩小区间重新画图精细化。在用普通的手工画草图的方法画交轨图的时候,可以借助于计算器使得隔根区间更短,但这种方法只对简单问题有效。6、x*xn105,即 ,所以 2n105。 因为21532768,21665537,217131072,所以n=17。(二)1、对于方程3x2ex0,为求最大正根与最小正根的近似值,试分别确定迭代函数g(x)及区间a,b,使得当x0a,b时,相应的迭代过程xk+1=g(xk)收敛到要求的根。2、证明:当x0=1.5时,迭代法 和 都收敛于方程f(x)=x3+4x2-10=0在区间1,2内的唯一实根x*,分别用上述迭代法求满足精度xk+1xk105的近似根

14、。3、为求方程f(x)=x3x210在x01.5附近的一个根,可将方程改写成下列等价形式,并建立相应的迭代公式1改写成,迭代公式为;2改写成x3=1+x2,迭代公式为;3改写成,迭代公式为。试分析每一种迭代公式的收敛性。分析与解答1、根据3x2和ex的图像可知,方程3x2ex0在实数域上有三个根,分别在区间(1,0),(0,1),(3,4)内。其最大正根在3,4区间,最小正根在0,1区间。取迭代函数g(x)=ln3x2,可以得到最大正根,而取迭代函数,可以得到最小正根。2、两种迭代法的迭代函数分别在区间1,2和1,1.5上满足定理2(不动点原理)的条件,故当x0=1.5时两种迭代法都收敛,且分别迭代9次和25,都可得到近似根1.36523。我们讨论第一种迭代法,用定理2证明。它的迭代函数为。首先,g(x)是一个减函数,当x=1时,当x2时,。所以当x1,2时,1g(2)g(x)g(1)2,即g(x)1,2。其次,显然这是一个增函数,当x2时,其函数值为 ,所以,g(x) g(2)1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论