版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、s一、内容提要一、内容提要s1. 本章的主要内容是二元一次方程组的本章的主要内容是二元一次方程组的解法和它的应用、简单的三元一次方程解法和它的应用、简单的三元一次方程组的解法和它的应用举例。组的解法和它的应用举例。s2. 解二元或三元一次方程组可以通过逐解二元或三元一次方程组可以通过逐步步“消元消元”,变,变“多元多元”为为“一元一元”,从而达到求解的目的。从而达到求解的目的。第五章第五章 一次方程组的小结与复习一次方程组的小结与复习 s本文介绍了两种解二元一次方程组的方法:本文介绍了两种解二元一次方程组的方法:s(1 1)代入法)代入法s把其中一个方程的把其中一个方程的用含另一个未知数用含另
2、一个未知数的代数式表示,然后代入另一个方程,就可以消去的代数式表示,然后代入另一个方程,就可以消去一个未知数,把二元方程组转化为一元方程。一个未知数,把二元方程组转化为一元方程。s(2 2)加减法)加减法s先利用等式的性质,用适当的数乘以需要变形的方先利用等式的性质,用适当的数乘以需要变形的方程的两边,使两个方程中程的两边,使两个方程中,然后把两个方程的两边分别相加或相减,然后把两个方程的两边分别相加或相减,就可以消去这个未知数,把二元方程组转化为一元就可以消去这个未知数,把二元方程组转化为一元方程。方程。s在三元一次方程组的解法举例中,进一步运用了这在三元一次方程组的解法举例中,进一步运用了
3、这两种消元法。两种消元法。s4.列二元或三元一次方程组解应用题列二元或三元一次方程组解应用题, ,与列一与列一元一次方程组解应用题的基本思想是一样的元一次方程组解应用题的基本思想是一样的. .关键是分析题中的各种数量之间的关系,找关键是分析题中的各种数量之间的关系,找出相等关系。出相等关系。s一般可直接设未知数一般可直接设未知数, ,即求什么,就设什么,即求什么,就设什么,设几个未知数,就要找出几个相等关系,然设几个未知数,就要找出几个相等关系,然后列出方程。后列出方程。s二、需要注意的几个问题二、需要注意的几个问题s1. 对于解含有两个未知数的应用问题,一般列对于解含有两个未知数的应用问题,
4、一般列出二元方程组要比列出一元方程组容易一些。二出二元方程组要比列出一元方程组容易一些。二元、三元方程组的知识,是解决实际中常遇到的元、三元方程组的知识,是解决实际中常遇到的更多元的问题的基础。更多元的问题的基础。s2. 在解一次方程组时,经常使用的是加减法。在解一次方程组时,经常使用的是加减法。当方程组中一个方程的某一个未知数的系数是当方程组中一个方程的某一个未知数的系数是1 1或者常数项是或者常数项是0 0时,用代入法比较简单时,用代入法比较简单; ;当两个方当两个方程的同一未知数的系数的绝对值相等或成整数倍程的同一未知数的系数的绝对值相等或成整数倍时时, ,在实际解一次方程组时,用加减法
5、比较简单在实际解一次方程组时,用加减法比较简单. .应该根据情况灵活运用两种方法,这需要经过一应该根据情况灵活运用两种方法,这需要经过一定量的练习,更需要认真思考才能做到。定量的练习,更需要认真思考才能做到。s例题选讲例题选讲s例例1. 求二元一次方程求二元一次方程 3x + 2y - 15 = 0 的所的所有整数解有整数解.s解解: 从方程从方程 3x + 2y - 15 = 0 ,得得 s y = (15 -3x) / 2 s因为因为 x , y的值都是正整数的值都是正整数,s所以所以 x的值只能是的值只能是1 , 3.s与与x 相对应的相对应的y大值是大值是6 , 3.s所以所以,这个二
6、元一次方程的所有整数解是这个二元一次方程的所有整数解是 s x = 1 x = 3s y = 6 y = 3 s例例2 . 填空填空:s(1) 在在 y = 3x + 5中中,若若 x = 1, 则则 y = ;若若 y = 2 ,则则 x = .s(2) 在在2x +3y+11= 0中中,若若2y=6,则则x+y = s(3) 若若x=2,y=3满足满足k x-2ky+1=0,则则k= . s(4) 由由2x-3y-4=0,可以得到用可以得到用x 表示表示y的式的式 子,则子,则 y=s例例3. 解下列方程组解下列方程组:s(1) 3x+2y=12x+5y=-3(1) 3x+2y=12x+5
7、y=-3s解解: : 原方程组可化为原方程组可化为s 3x+2y = -3 (1)3x+2y = -3 (1)s即可求得这方程组的解是即可求得这方程组的解是 x=1 12x+5y=-3 (2) y= -3 例例4.解关于解关于x,y的方程组的方程组: (x- 2a)/3 - (y - 3a)/2=0 (1) (2x-b)/2+(3y+4b)/3=5(a - 5/6b) (2)s解解:把方程组化简把方程组化简,得得s 2x - 3y+5a=0 (3)sxyab (4)s(3) - 2(4),得得s -5y+15a - 10b=0 , 即即 y=3a - 2b (5)s把把(5)代入代入(4)得得 x=2a - 3bs所以原方程组的解是所以原方程组的解是 x=2a - 3bs y=3a - 2b例例5.a市至市至b市航线长市航线长1200km,一架飞机从一架飞机从a市顺市顺风飞往风飞往b市需市需2小时小时30分分,从从b市逆风飞往市逆风飞往a市需市需3小时小时20分分.求飞机的速度与风速求飞机的速度与风速.s分析分析: 等量关系等量关系 (1) 路程路程 = 时间时间 . 速度速度s (2) 顺风飞行速度顺风飞行速度 = 飞机速度飞机速度+风速风速 s (3) 逆风飞行速度逆风飞行速度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年智能制造生产线升级改造合同2篇
- 2025画册摄影委托合同
- 2025公司向个人借款合同范本
- 企业合伙人合作协议范本
- 2025附期限合同及其效力
- 2025技术引进协议书技术转让合同
- 音乐器材租赁合同文本
- 酒店小卖部租赁合同
- 养殖场研究员聘用合同模板
- 艺术展览摄影记录聘用合同
- 人教版三年级上册脱式计算200题及答案
- 视觉传达设计史平面设计的起源与发展课件
- 医技沟通与合作课件
- 医学专业医学统计学试题(答案见标注) (三)
- cnas实验室规划方案
- 脊髓损伤的病理生理和病因
- 肝内胆管癌术后护理查房课件
- 职工心理健康知识手册
- 工程量自动计算表格新
- 新时期学校德育工作的思路与方法
- 切尔诺贝利核电站事故工程伦理分析
评论
0/150
提交评论