材料力学第六章弯曲应力_第1页
材料力学第六章弯曲应力_第2页
材料力学第六章弯曲应力_第3页
材料力学第六章弯曲应力_第4页
材料力学第六章弯曲应力_第5页
已阅读5页,还剩71页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、6- -1 梁弯曲时的正应力梁弯曲时的正应力6- -2 惯性矩的计算惯性矩的计算6- -3 梁弯曲时的强度计算梁弯曲时的强度计算6- -4 梁弯曲时的切应力梁弯曲时的切应力6- -5 提高弯曲强度的措施提高弯曲强度的措施第六章第六章 弯曲应力弯曲应力qfm 梁横截面上 与弯矩m对应, 与剪力f对应。 纯弯曲纯弯曲 (pure bending) 梁或梁上的某段内各横截面上无剪力而只有弯矩,横截面上只有与弯矩对应的正应力。6-1 6-1 梁弯曲时的正应力梁弯曲时的正应力meme一、弯曲分类一、弯曲分类 横力弯曲横力弯曲 (bending by transverse force) 梁横截面上既有弯矩

2、又有剪力;相应的,横截面既有正应力又有切应力。fcqfmfmfac二、二、 纯弯曲时的正应力纯弯曲时的正应力u计算公式的推导计算公式的推导 (1) 几何关系几何关系变形与应变观察在竖直平面内发生纯弯曲的梁,研究其表面变形情况 . 弯曲前画在梁的侧面上相邻横向线mm和nn间的纵向直线段aa和bb,在梁弯曲后成为弧线,靠近梁的顶面的线段aa缩短,而靠近梁的底面的线段bb则伸长; . 相邻横向线mm和nn,在梁弯曲后仍为直线,只是相对旋转了一个角度,且与弧线aa和bb保持正交。 根据表面变形情况,并设想梁的侧面上的横向线mm和nn是梁的横截面与侧表面的交线,可作出如下推论(假设):平面假设平面假设

3、梁在纯弯曲时,其原来的横截面仍保持为平面,只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后的横截面与梁弯曲后的轴线保持正交。此假设已为弹性力学的理论分析结果所证实。 横截面的转动使梁凹入一侧的纵向线缩短,凸出一侧的纵向线伸长,从而根据变形的连续性可知,中间必有一层纵向线只弯曲而无长度改变的中性层 (图f),而中性层与横截面的交线就是梁弯曲时横截面绕着它转动的轴 中中性轴性轴 (neutral axis)。(f)令中性层的半径为r(如图c),则有rddxryxyoobbabbbdd211113纵向线应变在横截面范围内的变化规律纵向线应变在横截面范围内的变化规律 图c为由相距d x的两横截面取

4、出的梁段在梁弯曲后的情况,两个原来平行的横截面绕中性轴相对转动了角d。梁的横截面上距中性轴 z为任意距离 y 处的纵向线应变由图c可知为(c)(2)(2)物理关系物理关系力与变形(应力、应变) 梁的材料在线弹性范围内工作(胡克定律),且拉、压弹性模量相同时,有ryee 这表明,直梁的横截面上的正应力沿垂直于中性轴的方向按线性规律变化m 即梁在纯弯曲时,其横截面上任一点处的纵向线应变与该点至中性轴的距离 y 成正比。 (3)静力学关系静力学关系 应力与内力。maymazd 梁的横截面上与正应力相应的法向内力元素da(图d )不可能组成轴力( ),也不可能组成对于与中性轴垂直的y 轴(弯曲平面内的

5、轴)的内力偶矩( ),只能组成对于中性轴 z 的内力偶矩,即0dnaaf0dayazm(d)将 代入上述三个静力学条件,有rye0ddnrrzaaesayeaf(a)0ddrryzaayeiayzeazm(b)meiayeaymzaazrrdd2(c) 以上三式中的sz,iyz,iz都是只与截面的形状和尺寸相关的几何量,属于截面的几何性质,而 其中 为截面对于z轴的静矩(static moment of an area)或一次矩(形心计算公式),其单位为m3。azaysd 为截面对于y轴和z轴的惯性积,其单位为m4。ayzayzid 为截面对于z轴的惯性矩(moment of inerita

6、of an area)或二次轴矩,其单位为m4。azayid2 由于式(a),(b)中的 不可能等于零,因而该两式要求:re 1. 横截面对于中性轴 z 的静矩等于零, ;显然这是要求中性轴 z 通过横截面的形心;0daay 2. 横截面对于 y 轴和 z 轴的惯性积等于零, ;在对称弯曲情况下,y 轴为横截面的对称轴,因而这一条件自动满足。0daayz0ddnrrzaaesayeaf(a)0ddrryzaayeiayzeazm(b)meiayeaymzaazrrdd2(c)由式(c)可知,直梁纯弯曲时中性层的曲率为 上式中的eiz称为梁的抗弯刚度(对z轴)。显然,由于纯弯曲时,梁的横截面上的

7、弯矩m 不随截面位置变化。zeimr1 将上式代入得出的式子 即得弯曲正应力计算公式:ryezimy(c)meiayeaymzaazrrdd2 应用此式时,如果如图中那样取 y轴向下为正的坐标系来定义式中 y 的正负,则在弯矩 m 按以前的规定确定其正负的情况下,所得正应力的正负自动表示拉应力或压应力。但实际应用中往往直接根据横截面上弯矩的转向及求正应力之点在中性轴的哪一侧来判别弯曲正应力为拉应力还是压应力;在此情况下可以把式中的 y 看作求应力的点离中性轴 z 的距离。 中性轴 z 为横截面对称轴的梁 (图a,b) 其横截面上最大拉应力和最大压应力的值相等;中性轴 z 不是横截面对称轴的梁

8、(图c) ,其横截面上的最大拉应力和最大压应力的值不相等。dzyo(b) yc,max yt,maxyz bd1 hod2(c) hbzyo(a)zzzwmyimimymaxmaxmax 中性轴z为横截面的对称轴时,横截面上最大拉、压应力的值max为式中,wz为截面的几何性质,称为弯曲截面系数(对z轴)(section modulus in bending),其单位为m3。hbzyodzyo 中性轴 z 不是横截面的对称轴时(参见图c),其横截面上最大拉应力值和最大压应力值为zimymax, tmaxt,zimymaxc,maxc,(1) 矩形截面矩形截面12dd32222bhybyayihh

9、az622bhhiwzz12dd32222hbzhzazibbay622hbbiwyyu简单截面对于形心轴的惯性矩和弯曲截面系数简单截面对于形心轴的惯性矩和弯曲截面系数思考思考: : 一长边宽度为 b,高为 h 的平行四边形,它对于形心轴 z 的惯性矩是否也是 ?123bhiz(2) 圆截面圆截面在等直圆杆扭转问题中已求得:32d42pdaiar32ddd4222pdiiazayaiyzaaarzoyyzdadr而由图可见,2=y2+z2 , 从而知而弯曲截面系数为6424pdiiiyz 32223ddidiwwyzyz 根据对称性可知,原截面对于形心轴z和y的惯性矩iz和iy是相等的,iz=

10、 iy,于是得zoyyzdadr(3) 空心圆截面空心圆截面 由于空心圆截面的面积等于大圆的面积ad减去小圆(即空心部分)的面积ad故有4444442222164646464dddddddddayayayayiddddaaaaaz式中, 。dddoyzd根据对称性可知:思考思考: 空心圆截面对于形心轴的惯性矩就等于大圆对形心轴的惯性矩减去小圆对于形心轴的惯性矩;但空心圆截面的弯曲截面系数并不等于大圆和小圆的弯曲截面系数之差,为什么?zyzywwii ,431322ddiwzz而空心圆截面的弯曲截面系数为doyzdu纯弯曲理论的推广纯弯曲理论的推广 工程中实际的梁大多发生横力弯曲,此时梁的横截面

11、由于切应力的存在而发生翘曲(warping)。此外,横向力还使各纵向线之间发生挤压(bearing)。因此,对于梁在纯弯曲时所作的平面假设和纵向线之间无挤压的假设实际上都不再成立。但弹性力学的分析结果表明,受满布荷载的矩形截面简支梁,当其跨长与截面高度之比 大于5时,梁的跨中横截面上按纯弯曲理论算得的最大正应力其误差不超过1%,故在工程应用中就将纯弯曲时的正应力计算公式用于横力弯曲情况,即hlzzwxmiyxm)( ,)(max 例题例题6 6-1 图a所示简支梁由56a号工字钢制成,其截面简化后的尺寸见图b。已知f=150 kn。试求危险截面上的最大正应力max。 解:解:在不考虑梁的自重(

12、 )的情况下,该梁的弯矩图如图所示,截面c为危险截面,相应的最大弯矩值为mkn041. 1 mkn3754m10kn1504maxflm由型钢规格表查得56a号工字钢截面3cm2342zw4cm65586zimpa160m102342mn10375363maxmaxzwm于是有显然,梁的自重引起的最大正应力仅为而危险截面上的最大正应力变为mpa7 .165pa107 .165m102342mn103886363maxmpa7 . 5mpa1607 .165远小于外加荷载f 所引起的最大正应力。mkn388mkn13mkn375842maxqlflm 如果考虑梁的自重(q=1.041 kn/m)

13、则危险截面未变,但相应的最大弯矩值变为 工程中常遇到由基本图形构成的组合截面,例如下面例题中所示的两种横截面。当对组合截面杆件计算在外力作用下的应力和变形时需要求出它们对于形心轴x,y (本节中的x轴就是以前我们所用的z轴) 的一些几何性质,例如:惯性矩 (moment of inertia)ayaxaxiayidd22,惯性积 (product of inertia)axyaxyid6-2 6-2 惯性矩的计算惯性矩的计算 在已知构成组合截面的每一图形对于通过其自身形心且平行于组合截面某个轴(例如x轴)的惯性矩时,组合截面的惯性矩可利用平行移轴公式求得。组合截面对于某对相互垂直的轴(例如x,

14、y轴)的惯性积也可类似地求得。 y2 y1yx bd1 hod2x 已知任意形状的截面(如图)的面积a以及对于形心轴xc和yc的惯性矩 及惯性积 ,现需导出该截面对于与形心轴xc , yc平行的x轴和y轴的惯性矩ix,iy和惯性积ixy。截面的形心c在x,y坐标系内的坐标为ccyxii ,ccyxi。和aybx1. 1. 惯性矩和惯性积的惯性矩和惯性积的平行移轴公式平行移轴公式因截面上的任一元素da在x,y坐标系内的坐标为ayybxxcc ,于是有aasaiaaayaayaayayiccxxaacacacax222222 dd2dddaaiicxx2注意到xc轴为形心轴,故上式中的静矩 等于零

15、,从而有cxs同理可得 以上三式就是惯性矩和惯性积的平行移轴公式。需要注意的是式中的a,b为坐标,有正负,应用惯性积平行移轴公式时要特别注意。abiicyy2abaiiccyxxyaaiicxx22. 2. 组合截面的惯性矩及惯性积组合截面的惯性矩及惯性积 若组合截面由几个部分组成,则组合截面对于x,y两轴的惯性矩和惯性积分别为nixyixyniyiynixixiiiiii111 , y2 y1yx bd1 hod2x 例题例题6-26-2 试求图a所示截面对于x轴的惯性矩ix ,对于y轴的惯性矩iy ,以及对于x,y轴的惯性积ixy 。(a) 解:解:将截面看作由一个矩形和两个半圆形组成,半

16、圆形的形心位置如图b所示。212xxxiii(1)求ix 设矩形对x轴的惯性矩为 ,每个半圆形对x轴的惯性矩为 ,则有1xi2xi其中:4433mm10333512mm200mm801221adix83212883222422dddddiixxc 至于 则需先求出半圆形对其自身形心轴的惯性矩。根据平行移轴公式可得 ,而半圆形对于直径轴x(图b)的惯性矩等于圆形对x轴的惯性矩 的一半,于是得83222ddiicxx644d2xi然后再利用平行移轴公式求半圆形对x轴的惯性矩:将 d = 80 mm,a = 100 mm 代入后得从而得图a所示截面对x轴的惯性矩:832832128 83222224

17、222ddadddddaiicxx44mm1046732xi44mm1027012221xxxiii(2) 求iy 此组合截面的y轴就是矩形和半圆形的形心轴,故不必应用平行轴公式而有将 d = 80 mm,a = 100 mm 代入后得128212224321ddaiiiyyy44mm100541yi(3) 求 ixy 由 可知,只要x 轴或y 轴为截面的对称轴,则由于与该轴对称的任何两个面积元素da的惯性积xyda数值相等而正负号相反,致使整个截面的惯性积必定等于零。图a所示截面的x 轴和y 轴都是对称轴,当然ixy=0。axyaxyid6-36-3 梁弯曲时的强度计算梁弯曲时的强度计算 等

18、直梁横截面上的最大正应力发生在最大弯矩所在横截面上距中性轴最远的边缘处,而且在这些边缘处,即使是横力弯曲情况,由剪力引起的切应力也等于零或其值很小(详见下节),至于由横向力引起的挤压应力可以忽略不计。因此可以认为梁的危险截面上最大正应力所在各点系处于单轴应力状态。于是可按单向应力状态下的强度条件形式来建立梁的正应力强度条件: max式中,为材料的许用弯曲正应力。对于中性轴为横截面对称轴的梁,上述强度条件可写作 zwmmax 由拉、压许用应力t和c不相等的铸铁等脆性材料制成的梁,为充分发挥材料的强度,其横截面上的中性轴往往不是对称轴,以尽量使梁的最大工作拉应力t,max和最大工作压应力c,max

19、分别达到(或接近)材料的许用拉应力t和许用压应力c 。(a)(b) 例题例题6 6-3 图a所示工字钢制成的梁,其计算简图可取为如图b所示的简支梁。钢的许用弯曲正应力=152 mpa 。试选择工字钢的号码。解:在不计梁的自重的情况下,弯矩图如图所示mkn375maxm强度条件 要求: zwmmax 366maxm102460pa10152mkn375mwz363m102447cm2447zw 此值虽略小于要求的wz但相差不到1%,故可以选用56b工字钢。由型钢规格表查得56b号工字钢的wz为此时危险截面上的最大工作应力为 其值超过许用弯曲应力约4.6%。工程实践中,如果最大工作应力超过许用应力

20、不到5%,则通常还是允许的。mpa159m102447mn101 .389363maxmaxzwmmkn1 .389mkn1 .14mkn3758mkn3752maxqlm 如果计入梁的自重 ,危险截面仍在跨中,相应的最大弯矩则为mkn1.127mkg115q 0)(fma05 . 2162132bfkn36bf 0yf01632baffkn12afmm2 .531601402001601201601401002001601y2323)2 .53120()160140(12160140)2 .53100()200160(12200160zi47mm109 . 2mm8 .1462 .53200

21、2yzcciym176109 . 22 .531012mpa22zcciym276109 . 28 .1461012mpa74.60zbbiym276109 . 28 .146108mpa50.40zbbiym176109 . 22 .53108mpa67.14zbbiym2mpa50.40zbbiym1mpa67.14zcciym1mpa22zcciym2mpa74.606-4 6-4 梁弯曲时的切应力梁弯曲时的切应力1dn2aafaiymmazd)d(11ayimmazd)d(11aysazd11*n2)d(zzsimmf*n1zzsimf*n2)d(zzsimmf*n1zzsimfxbx

22、bfddd 0 xf0dn1n2fffxbsimsimmzzzzd)d(*xbimszzdd*xmfddqbisfzzq*bisfzzq*qfzi*zsbbisfzzq*ddba 11)4(2dd22*zaayhbbas)4(2)(22qyhifyz0bhfbhhfhifqz231284232q2qmax)4(2)(8)(2222qyhbhhbbifyzafqmax34afqmax2bisfzz*maxqmax*maxzsbmm240mm400m3kn85bhlfmm240mm400m3kn85bhlfkn85 mkn5 .127maxqmaxfm4933mm1028. 11240024012bhizzabaiym92mpa.191028. 1200105 .1279649mm1028. 1zimpa96. 9zcbciymmpa0dmpa96. 9e92mpa.19ffa49mm1028. 1zibisfzzec*q2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论