版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、阻尼系数和固有频率的测量8.1 阻尼系数的测量8.1.1 自由振动衰减法图1 单自由度系统模型图1所示的一个单自由度质量-弹簧-阻尼系统,其质量为m (kg),弹簧刚度系数为k (N/m),粘性阻尼系数为r (N. m /s)。当质量上承受初始条件t=0时,位移 ,速度 激励时,将做自由衰减振动。在弱阻尼条件下其位移响应为衰减系数(1)响应曲线如图2所示。结论: 为衰减振动的周期, 为衰减振动的频率, 为衰减振动的圆频率。图2 弱阻尼衰减振动的响应曲线 从图2衰减振动的响应曲线上可直接测量出 ,然后根据 可计算出 n ; 计算出 p; 可计算出 计算出r; 计算出无阻尼时系统的固有频率 ; 计
2、算出无阻尼时系统的固有周期对于衰减系数n,可以用三种方法来计算:1、由相邻的正逢(或相邻的负峰)幅值比计算2、由相邻的峰-峰幅值比计算3、小阻尼情况适用公式8.1.2 半功率点法图3所示为一个单自由度质量-弹簧-阻尼系统强迫振动模型。其质量为m(kg),弹簧刚度系数为k (N/m),粘性阻尼系数为r (N. m /s)。质量m上承受简谐激振力 作用。其强迫振动的位移响应为图3 单自由度系统模型引入符号则有上式中, 相当于激振力的最大幅值 静止地作用在弹簧上所引起的弹簧静变形; 称为频率比; 称为放大因子,以 为横坐标, 为纵坐标,对于不同的 值所得到的一组曲线,称为幅频响应曲线,如图4所示(图
3、中只给出了一种 值); 为位移响应滞后力的相位角,以 为横坐标, 为纵坐标,对于不同的 值所得到的一组曲线,称为相频响应曲线,如图5所示。图4 强迫振动幅频响应曲线图5 强迫振动相频响应曲线 在幅频响应曲线中,当 时, ;当 时,其最大值 。在图中作一条水平线,其纵坐标为 ,与曲线交于 两点,该两点称为半功率点,两点之间的距离为图4 强迫振动幅频响应曲线8.1.3 共振法强迫振动的位移响应为速度响应为速度幅值为取得极值的条件为 ,即当 时,系统发生速度共振, 。此时相位差 ,即速度响应与激振力 之间的相位差为0;阻尼力 ,即激振力所作的功全部被阻尼所消耗。故有系统发生速度共振时, 因此,只要测
4、量系统发生速度共振时的速度幅值 和激振力幅值 ,即可计算出阻尼系数 ,并根据 算出衰减系数 , 算出相对阻尼系数 。 也可利用示波器力与速度的图像来测量阻尼系数。如图6所示,将力信号接入示波器的x 轴,速度信号接入示波器的y 轴,两通道的放大倍数调成一致,因二者之间的相位差为0,故形成图示的直线,该直线的斜率即为阻尼系数,即图6 共振法测阻尼的图像若x轴接入的是位移信号,则形成的图像为正椭圆,椭圆与x、y轴的交点即为 和 。据此也可测出阻尼系数 8.2 固有频率的测量8.2.1 自由振动衰减法系统的固有频率是指系统无阻尼时自由振动的频率,即 。对图1所示的单自由度质量-弹簧-阻尼系统,当受初始
5、扰动后,其自由振动的衰减曲线如图2所示。在曲线上可直接测量并计算出衰减的周期 ,衰减系数 、相对阻尼系数 ,因而有图1 单自由度系统模型图2 弱阻尼衰减振动的响应曲线8.2.1 速度共振的相位判别法图3 单自由度系统模型 图3所示为一个单自由度质量-弹簧-阻尼系统强迫振动模型。位移响应为幅值B取得极值的条件为 ,即在该点发生共振。共振幅值位移信号与激振力信号之间的相位差速度响应为幅值 取得极值的条件为 ,即在该点发生共振。共振幅值速度信号与激振力信号之间的相位差 加速度响应幅值 取得极值的条件为 ,即在该点发生共振。共振幅值加速度信号与激振力信号之间的相位差 图7 速度响应判别速度共振图8位移
6、响应判别速度共振图9加速度响应判别速度共振速度共振的相位判别法的依据即为系统发生速度共振时,激振力和速度响应之间的相位差为0。实验时,将激振力信号接入示波器的轴,速度响应信号接入示波器的轴,改变激振信号的频率,根据李沙育原理,屏幕上将出现如图的图像。即当图像变成斜直线时,系统发生速度共振,此时,即激振力的频率就是系统的固有频率。若示波器轴上分别接入的是位移信号和加速度信号,则屏幕上出现图,的图像。8.2. 稳态激振法图3 单自由度系统模型 图3所示为一个单自由度质量-弹簧-阻尼系统强迫振动模型。位移响应为位移幅值系统确定后p,n,m是确定的。只要保证激振力幅值 是常量, 的大小唯一取决于激振力
7、频率 。稳态激振法是每给定一个激振频率 ,测量一次位移响应幅值 ,从而得到一组 随 变化的数据。以 为横坐标, 为纵坐标,可描在曲线上,振幅最大的点对应的激振频率称为共振频率,测试系统发生了位移共振。图10 强迫振动时幅频响应曲线式中,相对阻尼系数 可以通过半功率点法测得,在 的情况下也可忽略,此时系统的共振频率等于固有频率。若测量的是系统速度响应幅值与激振频率之间的关系曲线,则系统的共振频率就是固有频率,即若测量的是系统加速度幅值与激振频率之间的关系曲线,则系统的共振频率与固有频率的关系为 8.3 传递函数与频响函数图11单自由度粘性阻尼系统由振动理论可知,图11所示单自由度粘性阻尼系统,阻
8、尼力 ,系统运动的微分方程为:对上式两边进行拉普拉斯变换,并假设初始速度、位移值为0,有式中s为拉氏变换因子,为复变量,也称复频率,其实部和虚部常用 和 表示,即 ; 为 的拉氏变换, 为 的拉氏变换。按照机械系统传递函数的定义,有该系统的传递函数对于自由振动, ,则有 。在小阻尼的情况下,求得的一对共轭复根为 和 称为该系统的复频率,其实部 即为系统的衰减系数,虚部 为系统的有阻尼固有频率。对系统运动的微分方程两边进行傅立叶变换,即 ,即有系统的频响函数式中, 为 的傅立叶变换, 为 的傅立叶变换。频响函数是频率的函数,为复数,即有幅值与相位,又有实部与虚部,常用以下曲线来描述其特性。8.3.1 Bode图频响函数的幅频图和相频图称为Bode图。对粘性阻尼,其模与相位角为式中, 为频率比, 为相对阻尼系数,图形如图12图12 频响函数的幅频与相频图在相频图上,当 时, ,而且与阻尼大小无关,系统处于相位共振状态,可以方便的识别出系统的固有频率 ;在幅频图上,当 时, 达到极大值,且 ,故可以识别出阻尼系数 。8.3.2 实频图与虚频图频响函数的实部和虚部分别为其图形如图13所示。在实部图上,利用半功率点法可以识别出系统的相对阻尼系数 , 时虚部达到极大值,实部为0,系统处于共振状态,可识别出系统的固有频率。图13频响函数的实部与虚部图8.3.2 Nyquist图 以频响函数的实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年债权债务转让的合同范本
- 个人商品购销合同2024年
- 2024年屋顶防水维修合同
- 2024年正规二手房合同
- 2024年员工聘用合同书范本
- 港航实务 皮丹丹 教材精讲班课件 09-第1章-1.3.1-水泥
- 2024年全新借款条模板范本
- 2024年企业聘用销售业务员协议书
- 2024年合同样本 室内装修合同样本
- 2024年翻译合作合同
- 期中测试卷-2024-2025学年统编版语文一年级上册
- 人教版一年级数学上册《第一、二单元测试卷》(附答案)
- 上市公司无形资产管理办法
- 人教版(2024新版)八年级上册物理第二章2.5《跨学科实践:制作隔音房间模型》教学设计
- 2024年济南轨道交通集团限公司招考(75名)易考易错模拟试题(共500题)试卷后附参考答案
- 计算机应用基础
- 第10课 读依依往事 解依依情思《往事依依》教学设计-七年级语文上册同步高效课堂(统编版)
- 第五单元 倍的认识(单元测试)-2024-2025学年三年级上册数学人教版
- 幼儿园中班数学活动《营救汪汪队》
- 2024年指标租赁协议模板(三篇)
- 建设工程质量检测方案-技术标部分
评论
0/150
提交评论