




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学1 第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学2 2.1 电荷守恒定律电荷守恒定律2.2 真空中静电场的基本规律真空中静电场的基本规律2.3 真空中恒定磁场的基本规律真空中恒定磁场的基本规律2.4 媒质的电磁特性媒质的电磁特性2.5 电磁感应定律和位移电流电磁感应定律和位移电流2.6 麦克斯韦方程组麦克斯韦方程组2.7 电磁场的边界条件电磁场的边界条件本章讨论内容本章讨论内容第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学32.1 电荷守恒定律电荷守恒定律 电磁场物理模型中的基本物理量可分为源量和场量两大类。电磁场物
2、理模型中的基本物理量可分为源量和场量两大类。电荷电荷电流电流电场电场磁场磁场(运动)(运动) 源量为电荷源量为电荷 和和电流电流 ,分别用来描述产生电磁效分别用来描述产生电磁效应的两类场源。电荷是产生电场的源,电流是产生磁场的源。应的两类场源。电荷是产生电场的源,电流是产生磁场的源。),(trq),(trI第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学4本节内容本节内容 2.1.1 电荷与电荷密度电荷与电荷密度 2.1.2 电流与电流密度电流与电流密度 2.1.3 电荷守恒定律电荷守恒定律第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学5 电荷是物质基本属性之一。电荷是物质基
3、本属性之一。 1897年英国科学家年英国科学家汤姆逊汤姆逊(J.J.Thomson)在实验中发现了在实验中发现了电子。电子。 1907 1913年间,美国科学家年间,美国科学家密立根密立根(R.A.Miliken)通过通过油滴实验,精确测定电子电荷的量值为油滴实验,精确测定电子电荷的量值为 e =1.602 177 3310-19 (单位:单位:C )确认了电荷的量子化概念。换句话说,确认了电荷的量子化概念。换句话说,e 是最小的电荷,而任是最小的电荷,而任何带电粒子所带电荷都是何带电粒子所带电荷都是e 的整数倍。的整数倍。 宏观分析时,电荷常是数以亿计的电子电荷宏观分析时,电荷常是数以亿计的
4、电子电荷e的集合,故的集合,故可不考虑其量子化的事实,而认为电荷量可不考虑其量子化的事实,而认为电荷量q可任意连续取值。可任意连续取值。2.1.1 电荷与电荷密度电荷与电荷密度第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学61. 电荷体密度电荷体密度VrqVrqrVd)(d)(lim)(0VVrqd)(单位:单位:C/m3 (库库/米米3 ) 根据电荷密度的定义,如果已知根据电荷密度的定义,如果已知某空间区域某空间区域V 中的电荷体密度,则区中的电荷体密度,则区域域V 中的总电荷中的总电荷q为为 电荷连续分布于体积电荷连续分布于体积V 内,用电荷体密度来描述其分布内,用电荷体密度来描
5、述其分布 理想化实际带电系统的电荷分布形态分为四种形式:理想化实际带电系统的电荷分布形态分为四种形式: 点电荷、体分布点电荷、体分布电荷、电荷、面分布电荷、线分布电荷面分布电荷、线分布电荷qVyxzorV第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学7 若电荷分布在薄层上若电荷分布在薄层上,当仅考虑薄层外、距薄层的距离要当仅考虑薄层外、距薄层的距离要比薄层的厚度大得多处的电场,而不分析和计算该薄层内的电比薄层的厚度大得多处的电场,而不分析和计算该薄层内的电场时,可将该薄层的厚度忽略,认为电荷是面分布。面分布的场时,可将该薄层的厚度忽略,认为电荷是面分布。面分布的电荷可用电荷面密度表示
6、电荷可用电荷面密度表示。 2. 电荷面密度电荷面密度单位单位: C/m2 (库库/米米2) 如果已知某空间曲面如果已知某空间曲面S 上的电荷上的电荷面密度,则该曲面上的总电荷面密度,则该曲面上的总电荷q 为为SsSrqd)(SrqSrqrSSd)(d)(lim)(0yxzorqSS第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学8 若电荷分布在细线上,若电荷分布在细线上,当仅考虑细线外、距细线的距离要当仅考虑细线外、距细线的距离要比细线的直径大得多处的电场,而不分析和计算线内的电场时,比细线的直径大得多处的电场,而不分析和计算线内的电场时,可将线的直径忽略,认为电荷是线分布。可将线的直
7、径忽略,认为电荷是线分布。线分布的电荷可用电线分布的电荷可用电荷线密度表示。荷线密度表示。 3. 电荷线密度电荷线密度lrqlrqrlld)(d)()(lim0 如果已知某空间曲线上的电荷线如果已知某空间曲线上的电荷线密度,则该曲线上的总电荷密度,则该曲线上的总电荷q 为为 Cllrqd)(单位单位: C / m (库库/米米)yxzorql第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学9 对于总电荷为对于总电荷为 q 的电荷集中在很小区域的电荷集中在很小区域 V 的情况,当不分的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算析和计算该电荷所在的小区域中的电场,而
8、仅需要分析和计算电场的区域又距离电荷区很远,即场点距源点的距离远大于电电场的区域又距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中的电荷可看作位于该区域中心、电荷为中心、电荷为 q 的点电荷。的点电荷。 点电荷的电荷密度表示点电荷的电荷密度表示)()(rrqr4. 点电荷点电荷yxzorq000( )lim0VrqrrV rrrr第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学102.1.2 电流与电流密度电流与电流密度说明说明:电流通常是时间的函数,不随时间变化的电流称为电流通常是时间的函数,不随时间变
9、化的电流称为恒定恒定 电流电流,用,用I I 表示。表示。 存在可以自由移动的电荷存在可以自由移动的电荷; ; 存在电场。存在电场。单位单位: A (安)(安)电流方向电流方向: : 正电荷的流动方向正电荷的流动方向0lim ()ddtiqtqt 电流电流 电荷的定向运动而形成,用电荷的定向运动而形成,用i 表示,其大小定义为:表示,其大小定义为: 单位时间内通过某一横截面单位时间内通过某一横截面S 的电荷量,即的电荷量,即形成电流的条件形成电流的条件:第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学11nn0dlimdSiiJeeSS 电荷在某一体积内定向运动所形电荷在某一体积内定向
10、运动所形成的电流称为体电流,用成的电流称为体电流,用电流密度矢电流密度矢量量 来描述。来描述。J单位单位:A / m2 (安(安/米米2) 。 一般情况下,在空间不同的点,电流的大小和方向往往是不一般情况下,在空间不同的点,电流的大小和方向往往是不同的。在电磁理论中,常用同的。在电磁理论中,常用体电流体电流、面电流面电流和和线电流线电流来描述电流来描述电流的分别状态。的分别状态。 1. 体电流体电流 流过任意曲面流过任意曲面S 的电流为的电流为体电流密度矢量体电流密度矢量JneS正电荷运动的方向正电荷运动的方向SJiSd第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学122. 面电流面
11、电流 电荷在一个厚度可以忽略的电荷在一个厚度可以忽略的薄层内定向运动所形成的电流称薄层内定向运动所形成的电流称为面电流,用面电流密度矢量为面电流,用面电流密度矢量 来描述其分布来描述其分布SJ面电流密度矢量面电流密度矢量d 0tenelSJ0htt0dlimdSliiJeell 单位:单位:A/m (安(安/米)米) 。通过薄导体层上任意有向曲线通过薄导体层上任意有向曲线 的电流为的电流为l正电荷运动的方向正电荷运动的方向)d(nleJilS第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学13例题:例题:一个半径为一个半径为a a的球体内均匀分布总电荷量为的球体内均匀分布总电荷量为Q
12、Q的电荷,球体以均的电荷,球体以均匀角速度匀角速度 绕一直径旋转。绕一直径旋转。求:球内的电流密度求:球内的电流密度 。J ax y z Q解:解:Jv334QQVa建立球面坐标系。建立球面坐标系。earQvrJ34sin3)(ervsin讨论:讨论:Jv1)1)式中:式中: 为空间中电荷体密度,为空间中电荷体密度, 为为正电荷流动速度。正电荷流动速度。v第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学142.1.3 电荷守恒定律(电流连续性方程)电荷守恒定律(电流连续性方程)电荷守恒定律电荷守恒定律:电荷既不能被创造,也不能被消灭,只能从物体电荷既不能被创造,也不能被消灭,只能从物体
13、 的一部分转移到另一部分,或者从一个物体转移的一部分转移到另一部分,或者从一个物体转移 到另一个物体。到另一个物体。电流连续性方程电流连续性方程积分形式积分形式微分形式微分形式流出闭曲面流出闭曲面S 的电流的电流等于体积等于体积V 内单位时内单位时间所减少的电荷量间所减少的电荷量恒定电流的连续性方程恒定电流的连续性方程0t恒定电流是无源场,电恒定电流是无源场,电流线是连续的闭合曲线,流线是连续的闭合曲线,既无起点也无终点既无起点也无终点电荷守恒定律是电磁现象中的基本定律之一。电荷守恒定律是电磁现象中的基本定律之一。VSVttqSJddddddtJ0dSSJ、0 J第第 2 章章 电磁场与电磁波
14、电磁场与电磁波长春理工大学152.2 真空中静电场的基本规律真空中静电场的基本规律静电场静电场:由静止电荷产生的电场。由静止电荷产生的电场。重要特征重要特征:对位于电场中的电荷有电场力作用。对位于电场中的电荷有电场力作用。本节内容本节内容 2.2.1 库仑定律库仑定律 电场强度电场强度 2.2.2 静电场的散度与旋度静电场的散度与旋度第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学161. 库仑库仑(Coulomb)定律定律(1785年年) 真空中静止点电荷真空中静止点电荷 q1 对对 q2 的作用力的作用力:yxzo1r1q2r12R12F2q ,满足牛顿第三定律。,满足牛顿第三定律
15、。2112FF 大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;312012212120211244RRqqRqqeFR2.2.1 库仑定律库仑定律 电场强度电场强度 方向沿方向沿q1 和和q2 连线方向,同性电荷相排斥,异性电荷相吸引;连线方向,同性电荷相排斥,异性电荷相吸引;说明:说明:第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学17 电场力服从叠加定理电场力服从叠加定理()iiRrr 真空中的真空中的N个点电荷个点电荷 (分别位于(分别位于 )对点电荷对点电荷 (位于(位于 )的作用力为)的作用力为12Nqqq、 、
16、 、q12Nrrr、 、 、rqq1q2q3q4q5q6q7NiiiiNiqqqRRqqFFi13014第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学182. 电场强度电场强度 空间某点的电场强度定义为置于该点的单位点电荷(又称空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即试验电荷)受到的作用力,即00)(lim)(0qrFrEq304)(RRqrE 根据上述定义,真空中静止点根据上述定义,真空中静止点电荷电荷q 激发的电场为激发的电场为()Rrr 描述电场分布的基本物理量描述电场分布的基本物理量 电场强度矢量电场强度矢量E0q试验正电荷试验正电荷 说明
17、:说明:1 1)对)对q q取极限是避免引入试验电荷影响原电场;取极限是避免引入试验电荷影响原电场;2 2)电场强度的方向与电场力的方向一致;)电场强度的方向与电场力的方向一致;3 3)电场强度的大小与试验电荷)电场强度的大小与试验电荷q q的电量无关。的电量无关。yxzorqrREM第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学19多点电荷系统产生的电场多点电荷系统产生的电场iiRrr式中式中: : 1q2qNqO 1r2rNrrNR1R2R( )P r ( )P r1E2ENEE合真空中,真空中,N N个点电荷:个点电荷:12,Nq qq,电荷量:电荷量:12,Nrrr,电荷位置
18、:电荷位置:由矢量叠加原理:由矢量叠加原理:31014NiiiiqRR12( )NE rEEE第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学20小体积元中的电荷产生的电场小体积元中的电荷产生的电场( )rVyxzoriVrM)(rS面密度为面密度为 的面分布的面分布电荷的电场强度电荷的电场强度)(rl线密度为线密度为 的线分布的线分布电荷的电场强度电荷的电场强度体密度为体密度为 的体分布电荷产生的电场强度的体分布电荷产生的电场强度)(riiiiiRRVrrE304)()(VVRRrd)(4130SSSRRrrEd)(41)(30CllRRrrEd)(41)(30第第 2 章章 电磁场
19、与电磁波电磁场与电磁波长春理工大学21例例 一个半径为a的均匀带电圆环,求轴线上的电场强度。 解:解: 取坐标系如图 2 - 2,圆环位于xoy平面,圆环中心与坐标原点重合,设电荷线密度为l 。 第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学22addlazrreaearezryxz)(sincos2/122所以 zlyxzlezazadzaeaeaezrE2/32202/322200)(2)()sincos(4)(第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学233. 几种典型电荷分布的电场强度几种典型电荷分布的电场强度02lE 22 3 20(0,0, )2()lza
20、zEzaz+(无限长)(无限长)(有限长)(有限长)lyxzoMa均匀带电圆环均匀带电圆环l1zM2均匀带电直线段均匀带电直线段均匀带电直线段的电场强度均匀带电直线段的电场强度:均匀带电圆环轴线上的电场强度:均匀带电圆环轴线上的电场强度:120210(coscos)4(sinsin)4llzEErrr-第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学24 例例 2.2.1 计算均匀带电的环形薄圆盘轴线上任意点的电场强计算均匀带电的环形薄圆盘轴线上任意点的电场强度。度。 解解:如图所示,环形薄圆盘的内半径为如图所示,环形薄圆盘的内半径为a 、外半径为、外半径为b,电荷,电荷面密度为面密度
21、为 。在环形薄圆盘上取面积元在环形薄圆盘上取面积元 ,其位置矢量为其位置矢量为 ,它所带的电量为它所带的电量为 。而薄圆盘轴线上的场点而薄圆盘轴线上的场点 的位置的位置矢量为矢量为 ,因此有,因此有Sd d d Sredd d d SSqS (0,0, )Pzzre z222 3/200( )dd4()bzSae zeE rz P(0,0,z)brRyzx均匀带电的环形薄圆盘均匀带电的环形薄圆盘dSadE2200dcossin)d0 xye(ee故故223/222 1/222 1/200d11( )2()2()()bSSzzazzzzazb E ree由于由于第第 2 章章 电磁场与电磁波电磁
22、场与电磁波长春理工大学25例题一例题一求真空中半径为求真空中半径为a a,带电量为,带电量为Q Q的导体球在球外空间中产生的导体球在球外空间中产生E E。分析可知:分析可知:v电场方向沿半径方向:电场方向沿半径方向:v电场大小只与场点距离球心的距离相关。电场大小只与场点距离球心的距离相关。sindsadad 式中:式中:coscosraR222sin(cos )Rara24sQa解:在球面上取面元解:在球面上取面元dsds,该面元在,该面元在P P点处产生的电场径向分量为:点处产生的电场径向分量为:201cos4srdsdEr R第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学2623
23、0cossin4srradEad dR 223000230020cossin4cossin24rrsssEdEaraddRaradRQr 说明:与位于球心的点电荷说明:与位于球心的点电荷Q Q在空间中产生的电场等效。在空间中产生的电场等效。第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学275330013()( )2cossin44rp r rpPE reerrr pql电偶极矩电偶极矩Er+q电偶极子电偶极子zolq电偶极子的场图电偶极子的场图等位线等位线电场线电场线 电偶极子是由相距很近、带等值异号的两个点电荷组成的电偶极子是由相距很近、带等值异号的两个点电荷组成的电荷系统,其远区
24、电场强度为电荷系统,其远区电场强度为 电偶极子的电场强度:电偶极子的电场强度:第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学282.2.2 静电场的散度与旋度静电场的散度与旋度 VSVrSrE)d(1d)(0高斯定理表明高斯定理表明:静电场是有源场,电力线起始于正电荷,终止静电场是有源场,电力线起始于正电荷,终止 于负电荷。于负电荷。静电场的散度静电场的散度(微分形式)(微分形式)1. 静电场散度与高斯定理静电场散度与高斯定理静电场的高斯定理静电场的高斯定理(积分形式)(积分形式)( )0E r 环路定理表明环路定理表明:静电场是无旋场,是保守场,电场力做功与路径静电场是无旋场,是保
25、守场,电场力做功与路径 无关。无关。静电场的旋度静电场的旋度(微分形式)(微分形式)2. 静电场旋度与环路定理静电场旋度与环路定理静电场的环路定理静电场的环路定理(积分形式)(积分形式)0d)(ClrE0)()(rrE第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学290022244d Sd SdS rRRSR 球:():( S r )dSdSooRd0ds0dSd第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学302220000cosRdsResdRdsdesddsdsesdRRR,dR0dsReds第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学31闭S)(:srS
26、40dsds第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学3221sdsd,)(0:srSo2ds1ds1200RRdsedse第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学3300224440ssRRsssDdsEdsedsqqedsRRq qSqdqS()()()( 在 内)( 在 外)第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学34)(NK 00102000010200121KNKNsssssKKiiDDDDDD dsDdsDdsDdsDdsqqqq,第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学35diqKiiq1dsQdsdD0Q( )rs第
27、第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学36 在电场分布具有一定对称性的情况下,可以利用高斯定理计在电场分布具有一定对称性的情况下,可以利用高斯定理计算电场强度。算电场强度。 3. 利用高斯定理计算电场强度利用高斯定理计算电场强度具有以下几种对称性的场可用高斯定理求解:具有以下几种对称性的场可用高斯定理求解: 球对称分布球对称分布:包括均匀带电的球面,球体和多层同心球壳等。:包括均匀带电的球面,球体和多层同心球壳等。带电球壳带电球壳多层同心球壳多层同心球壳均匀带电球体均匀带电球体aO0第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学37 无限大平面电荷无限大平面电荷:如无
28、限大的均匀带电平面、平板等。:如无限大的均匀带电平面、平板等。 轴对称分布轴对称分布:如无限长均匀带电的直线,圆柱面,圆柱壳等。:如无限长均匀带电的直线,圆柱面,圆柱壳等。第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学38 例例2.2.2 求真空中均匀带电球体的场强分布。已知球体半径求真空中均匀带电球体的场强分布。已知球体半径为为a ,电,电 荷密度为荷密度为 0 。 解解:(1)球外某点的场强球外某点的场强0300341daqSES(2)求球体内一点的场强)求球体内一点的场强VSEVSd1d00ar0rrEa20303raE30023414rEr003rE (r a 时,因时,因
29、,故,故22 3/23()zaz2200223/2223/20( )d 4()2()zIaIae aB zzaza2200d( cossin)d0 xyeee由于由于 ,所以,所以 在圆环的中心点上,在圆环的中心点上,z = 0,磁感应强度最大,即,磁感应强度最大,即第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学462.3.2 恒定磁场的散度和旋度恒定磁场的散度和旋度 )()(0rJrBISrJlrBSC00d)(d)(1.1. 恒定磁场的散度与磁通连续性原理恒定磁场的散度与磁通连续性原理磁通连续性原理磁通连续性原理表明表明:恒定磁场是无源场,磁感应线是无起点和恒定磁场是无源场,磁感
30、应线是无起点和 终点的闭合曲线。终点的闭合曲线。恒定场的散度恒定场的散度(微分形式)(微分形式)磁通连续性原理磁通连续性原理(积分形式)(积分形式)安培环路定理表明安培环路定理表明:恒定磁场是有旋场,是非保守场、电流是磁恒定磁场是有旋场,是非保守场、电流是磁 场的旋涡源。场的旋涡源。恒定磁场的旋度恒定磁场的旋度(微分形式)(微分形式)2. 恒定磁场的旋度与安培环路定理恒定磁场的旋度与安培环路定理安培环路定理安培环路定理(积分形式)(积分形式)0d)(SSrB0)(rB第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学47 解解:分析场的分布,取安培环路如图,则:分析场的分布,取安培环路如
31、图,则 根据对称性,有根据对称性,有 ,故,故 12BBB00000202SySyJexBJex 在磁场分布具有一定对称性的情况下,可以利用安培环路在磁场分布具有一定对称性的情况下,可以利用安培环路定理计算磁感应强度。定理计算磁感应强度。 3. 利用安培环路定理计算磁感应强度利用安培环路定理计算磁感应强度 例例2.3.2 求电流面密度为求电流面密度为 的无限大电流薄板产生的磁的无限大电流薄板产生的磁感应强度。感应强度。0SzSJe JlJlBlBlBSC0021dC1B2BOxy第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学48 解解 选用圆柱坐标系,则选用圆柱坐标系,则()Be B
32、应用安培环路定理,得应用安培环路定理,得21022IBa例例2.3.3 求载流无限长同轴电缆产生的磁感应强度。求载流无限长同轴电缆产生的磁感应强度。(1) 0a22122IIIaa取安培环路取安培环路 ,交链的电流为,交链的电流为()a0122IBea abcII第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学49(3) bc应用安培环路定理,得应用安培环路定理,得220322()2I cBcb(4) c(2) ab202 BI222232222bcIIIIcbcb40I 2203222I cBecb022IBe40B acb02Ib02IaO第第 2 章章 电磁场与电磁波电磁场与电磁
33、波长春理工大学502.4 媒质的电磁特性媒质的电磁特性 本节内容本节内容 2.4.1 电介质的极化电介质的极化 电位移矢量电位移矢量 2.4.2 磁介质的磁化磁介质的磁化 磁场强度磁场强度 2.4.3 媒质的传导特性媒质的传导特性 媒质对电磁场的响应可分为三种情况:媒质对电磁场的响应可分为三种情况:极化极化、磁化磁化和和传导传导。 描述媒质电磁特性的参数为:描述媒质电磁特性的参数为: 介电常数介电常数、磁导率磁导率和和电导率电导率。第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学512.4.1 电介质的极化电介质的极化 电位移矢量电位移矢量1. 电介质的极化现象电介质的极化现象 电介质
34、的分子分为无极分电介质的分子分为无极分子和有极分子。子和有极分子。无极分子无极分子有极分子有极分子无外加电场无外加电场无极分子无极分子有极分子有极分子有外加电场有外加电场E 在电场作用下,介质中无在电场作用下,介质中无极分子的束缚电荷发生位移,极分子的束缚电荷发生位移,有极分子的固有电偶极矩的取有极分子的固有电偶极矩的取向趋于电场方向,这种现象称向趋于电场方向,这种现象称为电介质的极化。为电介质的极化。 无极分子的极化称为位移无极分子的极化称为位移极化,有极分子的极化称为取极化,有极分子的极化称为取向极化。向极化。第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学522. 极化强度矢量极
35、化强度矢量)mC(2P0limiVpPnpV 极化强度矢量极化强度矢量 是描述介质极化程是描述介质极化程 度的物理量,定义为度的物理量,定义为Ppql 分子的平均电偶极矩分子的平均电偶极矩 P 的物理意义:单位体积内分子电偶的物理意义:单位体积内分子电偶 极矩的矢量和。极矩的矢量和。 极化强度与电场强度有关,其关系一般比较复杂。在线性、极化强度与电场强度有关,其关系一般比较复杂。在线性、 各向同性的电介质中,各向同性的电介质中, 与电场强度成正比,即与电场强度成正比,即Pe0PE e(0) 电介质的电极化率电介质的电极化率 EpnPipp第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学
36、53 由于极化,正、负电荷发生位移,在电介质内部可能出现净由于极化,正、负电荷发生位移,在电介质内部可能出现净余的极化电荷分布,同时在电介质的表面上有面分布的极化电荷。余的极化电荷分布,同时在电介质的表面上有面分布的极化电荷。3. 极化电荷极化电荷( 1 ) 极化电荷体密度极化电荷体密度 在电介质内任意作一闭合面在电介质内任意作一闭合面S,只只有电偶极矩穿过有电偶极矩穿过S 的分子对的分子对 S 内的极化内的极化电荷有贡献。由于负电荷位于斜柱体内电荷有贡献。由于负电荷位于斜柱体内的电偶极矩才穿过小面元的电偶极矩才穿过小面元 dS ,因此,因此dS对极化电荷的贡献为对极化电荷的贡献为Pdd co
37、sd cosdqqnl SP SPS S 所围的体积内的极化电荷所围的体积内的极化电荷 为为PqVSPVPSPqddPP E SPSdV第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学54( 2 ) 极化电荷面密度极化电荷面密度pnSP e 紧贴电介质表面取如图所示的闭合曲面,则穿过面积元紧贴电介质表面取如图所示的闭合曲面,则穿过面积元 的极化电荷为的极化电荷为dSPdd cosd cosdqqnl SP SPS故得到电介质表面的极化电荷面密度为故得到电介质表面的极化电荷面密度为nedSSP第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学554. 电位移矢量电位移矢量 介质中的
38、高斯定理介质中的高斯定理 介质的极化过程包括两个方面:介质的极化过程包括两个方面:q 外加电场的作用使介质极化,产生极化电荷;外加电场的作用使介质极化,产生极化电荷;q 极化电荷反过来激发电场,两者相互制约,并达到平衡状极化电荷反过来激发电场,两者相互制约,并达到平衡状 态。无论是自由电荷,还是极化电荷,它们都激发电场,服态。无论是自由电荷,还是极化电荷,它们都激发电场,服 从同样的库仑定律和高斯定理。从同样的库仑定律和高斯定理。VpSVSE)d(1d00pE自由电荷和极化电荷共同激发的结果自由电荷和极化电荷共同激发的结果 介质中的电场应该是外加电场和极化电荷产生的电场的叠介质中的电场应该是外
39、加电场和极化电荷产生的电场的叠加,应用高斯定理得到:加,应用高斯定理得到:第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学56PED0任意闭合曲面电位移矢任意闭合曲面电位移矢量量 D 的通量等于该曲面的通量等于该曲面包含自由电荷的代数和包含自由电荷的代数和 小结小结:静电场是有源无旋场,电介质中的基本方程为:静电场是有源无旋场,电介质中的基本方程为 0EP引入电位移矢量(单位:引入电位移矢量(单位:C/m2 ) )pP 将极化电荷体密度表达式将极化电荷体密度表达式 代入代入 ,有,有0PED则有则有 VSVSDdd其积分形式为其积分形式为 0DE (微分形式),(微分形式), (积分形
40、式)(积分形式) 0dddCVSlEVSD第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学57EPe0EEED0re0)1 (在这种情况下在这种情况下0re0)1 (er1其中其中 称为介质的介电常数,称为介质的介电常数, 称为介称为介质的相对介电常数(无量纲)。质的相对介电常数(无量纲)。* * 介质有多种不同的分类方法,如:介质有多种不同的分类方法,如:均匀和非均匀介质均匀和非均匀介质各向同性和各向异性介质各向同性和各向异性介质时变和时不变介质时变和时不变介质线性和非线性介质线性和非线性介质确定性和随机介质确定性和随机介质5. 电介质的本构关系电介质的本构关系E 极化强度极化强度
41、与电场强度与电场强度 之间的关系由介质的性质决定。之间的关系由介质的性质决定。对于线性各向同性介质,对于线性各向同性介质, 和和 有简单的线性关系有简单的线性关系PEP第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学58 例例 2.1 假设在半径为a的球体内均匀分布着密度为0的电荷,试求任意点的电场强度。 解:高斯定理解:高斯定理 当ra时, 3002344arEr故故 )(32030rraEr00QsdEQsdDss第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学59当ra) (ra) 第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学 例例 2 一个半径为a的导体球,
42、带电量为Q,在导体球外套有外半径为b的同心介质球壳, 壳外是空气,如图 2 所示。求空间任一点的D、 E、 P以及束缚电荷密度。图 2 例 2 用图 第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学 解:解: rerQD24(ra) 介质内(arb): rrrrerQEDPerQDE2024141第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学041200PerQDEr介质外(br):介质内表面(r=a)的束缚电荷面密度: 241aQePnPrrrSP介质外表面(r=b)的束缚电荷面密度: 241bQePnPrrrSP第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学65
43、2.4.2 磁介质的磁化磁介质的磁化 磁场强度磁场强度1. 磁介质的磁化磁介质的磁化 介质中分子或原子内的电子运动形介质中分子或原子内的电子运动形成分子电流,形成分子磁矩成分子电流,形成分子磁矩无外加磁场无外加磁场外加磁场外加磁场B 在外磁场作用下,分子磁矩定向在外磁场作用下,分子磁矩定向排列,宏观上显示出磁性,这种现象排列,宏观上显示出磁性,这种现象称为磁介质的称为磁介质的磁化磁化。mpi S 无外磁场作用时,分子磁矩不规无外磁场作用时,分子磁矩不规则排列,宏观上不显磁性。则排列,宏观上不显磁性。mpi S 第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学66mm0limVpMnpV
44、B2. 磁化强度矢量磁化强度矢量M 磁化强度磁化强度 是描述磁介质磁化是描述磁介质磁化程度的物理量,定义为单位体积中程度的物理量,定义为单位体积中的分子磁矩的矢量和,即的分子磁矩的矢量和,即 MmMnp单位为单位为A/m。第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学673. 磁化电流磁化电流 磁介质被磁化后,在其内部磁介质被磁化后,在其内部与表面上可能出现宏观的电流分与表面上可能出现宏观的电流分布,称为磁化电流。布,称为磁化电流。 考察穿过任意边界回路考察穿过任意边界回路C 所围曲面所围曲面S 的电流。只有分子电流的电流。只有分子电流与周界曲线与周界曲线C相交链的分子才对电流有贡献
45、。与线元相交链的分子才对电流有贡献。与线元dl 相交链的相交链的分子,中心位于如图所示的斜圆柱内,所交链的电流分子,中心位于如图所示的斜圆柱内,所交链的电流MmddddIni SlnplMl BCdldlmpS穿过曲面穿过曲面S 的磁化电流为的磁化电流为(1 1) 磁化电流体密度磁化电流体密度MJSCCSMlMIIdddMM第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学68MJMMMdSIJS由由 ,即得到磁化电流体密度,即得到磁化电流体密度MttddddIMlMelMl 在紧贴磁介质表面取一长度元在紧贴磁介质表面取一长度元d dl,与此交链的磁化电流为,与此交链的磁化电流为(2)
46、磁化电流面密度磁化电流面密度MSJMtSJM则则即即MnSJMe的切向分量的切向分量MMSJneMld第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学694. 磁场强度磁场强度 介质中安培环路定理介质中安培环路定理 0M()BJJ SMCSJJlBd)(d0MJJ、分别是传导电流密度和磁化电流密度。分别是传导电流密度和磁化电流密度。 将极化电荷体密度表达式将极化电荷体密度表达式 代入代入 , 有有MJM0M()BJJ JMB)(0)(0MHB, 即即 外加磁场使介质发生磁化,磁化导致磁化电流。磁化电流同外加磁场使介质发生磁化,磁化导致磁化电流。磁化电流同样也激发磁感应强度,两种相互作用
47、达到平衡,介质中的磁感应样也激发磁感应强度,两种相互作用达到平衡,介质中的磁感应强度强度B 应是所有电流源激励的结果:应是所有电流源激励的结果: MBH0定义磁场强度定义磁场强度 为:为:H第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学70)()(rJrHSCSrJlrHd)(d)(0)(rB0d)(SSrB则得到介质中的安培环路定理为:则得到介质中的安培环路定理为:磁通连续性定理为磁通连续性定理为小结小结:恒定磁场是有旋无源场,磁介质中的基本方程为:恒定磁场是有旋无源场,磁介质中的基本方程为 (积分形式)(积分形式) (微分形式)(微分形式)0)()()(rBrJrH0d)(d)(
48、d)(SSCSrBSrJlrH第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学71HMmHHB)1 (m0m其中,其中, 称为介质的磁化率(也称为磁化系数)。称为介质的磁化率(也称为磁化系数)。这种情况下这种情况下0rm0)1 (mr1其中其中 称为介质的磁导率,称为介质的磁导率, 称为介质称为介质的相对磁导率(无量纲)。的相对磁导率(无量纲)。顺磁质顺磁质抗磁质抗磁质铁磁质铁磁质磁介质的分类磁介质的分类1r5. 磁介质的本构关系磁介质的本构关系 磁化强度磁化强度 和磁场强度和磁场强度 之间的关系由磁介质的物理性质决之间的关系由磁介质的物理性质决定,对于线性各向同性介质,定,对于线性各
49、向同性介质, 与与 之间存在简单的线性关系:之间存在简单的线性关系:MHHM1r1r第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学72IHC2dlH磁场强度磁场强度02IHe磁化强度磁化强度00020IaaeBMH磁感应强度磁感应强度0022IaIaeBeHMB 例例2.4.1 有一磁导率为有一磁导率为 ,半径为,半径为a 的无限长导磁圆柱,其的无限长导磁圆柱,其轴线处有无限长的线电流轴线处有无限长的线电流 I,圆柱外是空气(,圆柱外是空气(0 ),试求圆柱内),试求圆柱内外的外的 、 和和 的分布。的分布。 解解 磁场为平行平面场磁场为平行平面场, ,且具有轴对称性,应用安培环路定
50、理,且具有轴对称性,应用安培环路定理,得得第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学732.4.3 媒质的传导特性媒质的传导特性 对于线性和各向同性导电媒质,媒质内任一点的电流密度矢对于线性和各向同性导电媒质,媒质内任一点的电流密度矢量量 J 和电场强度和电场强度 E 成正比,表示为成正比,表示为EJ这就是欧姆定律的微分形式。式中的比例系数这就是欧姆定律的微分形式。式中的比例系数 称为媒质的电称为媒质的电导率,单位是导率,单位是S/m(西(西/米)。米)。晶格晶格带电粒子带电粒子 存在可以自由移动带电粒子的介质称为存在可以自由移动带电粒子的介质称为导电媒质导电媒质。在外场作。在外
51、场作用下,导电媒质中将形成定向移动电流。用下,导电媒质中将形成定向移动电流。 第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学743. 焦耳定律焦耳定律 当导体两端的电压为U,流过的电流为I时,则在单位时间内电场力对电荷所作的功,即功率是 UIP 在导体中,沿电流线方向取一长度为l、截面为S的体积元,该体积元内消耗的功率为 VEJSlEJIlEIUP第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学75 当V0,取P/V的极限,就得出导体内任一点的热功率密度,表示为 20limEEJVPpV或 EJp此式就是焦耳定律的微分形式。 应该指出,焦耳定律不适应于运流电流。因为对于运流电
52、流而言,电场力对电荷所作的功转变为电荷的动能,而不是转变为电荷与晶格碰撞的热能。 第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学762.5 电磁感应定律和位移电流电磁感应定律和位移电流 本节内容本节内容 2.5.1 电磁感应定律电磁感应定律 2.5.2 位移电流位移电流 电磁感应定律电磁感应定律 揭示时变磁场产生电场。揭示时变磁场产生电场。 位移电流位移电流 揭示时变电场产生磁场。揭示时变电场产生磁场。 重要结论重要结论: 在时变情况下,电场与磁场相互激励,形成统一在时变情况下,电场与磁场相互激励,形成统一 的电磁场。的电磁场。第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学
53、772.5.1 电磁感应定律电磁感应定律 1881年年法拉第发现,当穿过导体回路的磁通量发生变化时,法拉第发现,当穿过导体回路的磁通量发生变化时,回路中就会出现感应电流和电动势,且感应电动势与磁通量的变回路中就会出现感应电流和电动势,且感应电动势与磁通量的变化有密切关系,由此总结出了著名的法拉化有密切关系,由此总结出了著名的法拉第第电磁感应定律。电磁感应定律。 负号表示感应电流产生的磁场总是阻止磁通量的变化。负号表示感应电流产生的磁场总是阻止磁通量的变化。inddt 1. 法拉第电磁感应定律的表述法拉第电磁感应定律的表述 in,i 当通过导体回路所围面积的磁通量当通过导体回路所围面积的磁通量
54、发生变化时,回路中产生的感应电动势发生变化时,回路中产生的感应电动势 的大小等于磁通量的时间变化率的负值,的大小等于磁通量的时间变化率的负值,方向是要阻止回路中磁通量的改变,即方向是要阻止回路中磁通量的改变,即 in第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学78SSBd 设任意导体回路设任意导体回路 C 围成的曲面为围成的曲面为S,其单位法向矢量为其单位法向矢量为 ,则穿过回路的磁通,则穿过回路的磁通为为 neindddSBSt ne B CS dl 导体回路中有感应电流,表明回路中存在感应电场导体回路中有感应电流,表明回路中存在感应电场 ,回路,回路中的感应电动势可表示为中的感
55、应电动势可表示为inE因而有因而有SCSBtlEddddinClEdinin第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学79 感应电场是由变化的磁场所激发的电场。感应电场是由变化的磁场所激发的电场。 感应电场是有旋场。感应电场是有旋场。 感应电场感应电场不仅存在于导体回路中,也存在于导体回路之外不仅存在于导体回路中,也存在于导体回路之外 的空间。的空间。 对空间中的任意回路(不一定是导体回路)对空间中的任意回路(不一定是导体回路)C ,都有,都有 对感应电场的讨论对感应电场的讨论:SCSBtlEddddinSCSBtlEdddd0dcClE 若空间同时存在由电荷产生的电场若空间同时
56、存在由电荷产生的电场 , ,则总电场则总电场 应为应为 与与 之和,即之和,即 。由于。由于 ,故有,故有 EinEincEEEcEcE推广的法拉第推广的法拉第电磁感应定律电磁感应定律第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学80相应的微分形式为相应的微分形式为(1) 回路不变,磁场随时间变化回路不变,磁场随时间变化ddddSSBBSStt2. 引起回路中磁通变化的几种情况引起回路中磁通变化的几种情况磁通量的变化由磁场随时间变化引起,因此有磁通量的变化由磁场随时间变化引起,因此有BEt SCStBlEdd( 2 ) 导体回路在恒定磁场中运动导体回路在恒定磁场中运动( 3 ) 回路
57、在时变磁场中运动回路在时变磁场中运动CClBvlEd)(dinCSCStBlBvlEdd)(din动生电动势动生电动势第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学81 (1) ,矩形回路静止;,矩形回路静止;0cos()zBe Btxbaoyx均匀磁场中的矩形环均匀磁场中的矩形环LvBin00dcos()dsin()zzSSBSe Bte SabBttt (3) ,且矩形回路,且矩形回路上的可滑动导体上的可滑动导体L以匀速以匀速 运动。运动。vevx)cos(0tBeBz 解解:(1) 均匀磁场均匀磁场 随时间作简谐随时间作简谐变化,而回路静止,因而回路内的感应变化,而回路静止,因
58、而回路内的感应电动势是由磁场变化产生的,故电动势是由磁场变化产生的,故B 例例 2.5.1 长为长为 a、宽为、宽为 b 的矩形环中有均匀磁场的矩形环中有均匀磁场 垂直穿过,垂直穿过,如图所示。在以下三种情况下,求矩形环内的感应电动势。如图所示。在以下三种情况下,求矩形环内的感应电动势。B (2) ,矩形回路的宽边,矩形回路的宽边b = 常数,但其长边因可滑动常数,但其长边因可滑动导体导体L以匀速以匀速 运动而随时间增大;运动而随时间增大;0BeBzxve v第第 2 章章 电磁场与电磁波电磁场与电磁波长春理工大学82 ( 3 ) 矩形回路中的感应电动势是由磁场变化以及可滑动导体矩形回路中的感
59、应电动势是由磁场变化以及可滑动导体 L在磁场中运动产生的,故得在磁场中运动产生的,故得00sin()cos()vt bBtvbBt ( 2 ) 均匀磁场均匀磁场 为恒定磁场,而回路上的可滑动导体以匀速为恒定磁场,而回路上的可滑动导体以匀速运动,因而回路内的感应电动势全部是由导体运动,因而回路内的感应电动势全部是由导体 L 在磁场中运动产在磁场中运动产生的,故得生的,故得B或或in00ddd()ddSBSbB vtbB vtt CyzxCvbBleBevelBv00ind)(d)(CSStBlBvdd)(inCSzzyzxSetBetBletBeved)cos(d)cos(00第第 2 章章 电
60、磁场与电磁波电磁场与电磁波长春理工大学83 (1)线圈静止时的感应电动势;)线圈静止时的感应电动势; 解解: (1)线圈静止时,感应电动势是由时变磁场引起,故)线圈静止时,感应电动势是由时变磁场引起,故 (2)线圈以角速度)线圈以角速度 绕绕 x 轴旋转时的感应电动势。轴旋转时的感应电动势。ab 例例 2.5.2 在时变磁场在时变磁场 中,放置有一个中,放置有一个 的的矩形线圈。初始时刻,线圈平面的法向单位矢量矩形线圈。初始时刻,线圈平面的法向单位矢量 与与 成成角,如角,如图所示。试求:图所示。试求: 0sin()yBe Btneye0sin()dynSe BteSt 0cos()cos d
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川幼儿师范高等专科学校《大地测量学实验》2023-2024学年第二学期期末试卷
- 晋中师范高等专科学校《网络及其计算》2023-2024学年第二学期期末试卷
- 福建对外经济贸易职业技术学院《大学生劳动教育》2023-2024学年第二学期期末试卷
- 天津艺术职业学院《文献目录与信息检索》2023-2024学年第二学期期末试卷
- 2025海南省安全员A证考试题库及答案
- 贵州中医药大学时珍学院《安全经济学》2023-2024学年第二学期期末试卷
- 2024-2025学年辽宁省七校协作体高一上学期12月月考历史试卷
- 2025江西省建筑安全员-A证考试题库及答案
- 漯河医学高等专科学校《奥林匹克文化》2023-2024学年第二学期期末试卷
- 辽宁轻工职业学院《阿拉伯文学选读》2023-2024学年第二学期期末试卷
- 小学生国家文化安全教育
- 2024年消防初级考试模拟试题和答案
- 小学五年级奥数竞赛试题(含答案)
- Unit-3-Reading-and-thinking课文详解课件-高中英语人教版必修第二册
- 品牌服装设计课件
- 小学六年级美术期末试卷及答案课件
- DB11T 381-2023既有居住建筑节能改造技术规程
- NB-T 47013.7-2012(JB-T 4730.7) 4730.7 承压设备无损检测 第7部分:目视检测
- 统编版高中语文必修下册 第一单元单元学习任务 课件
- 新版出口报关单模板
- 幼儿园卫生保健十三种表格
评论
0/150
提交评论