第八章股票价格行为模式_第1页
第八章股票价格行为模式_第2页
第八章股票价格行为模式_第3页
第八章股票价格行为模式_第4页
第八章股票价格行为模式_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第八章第八章 股票价格的行为模式股票价格的行为模式(8版教材第十三章维纳过程和伊藤引理)版教材第十三章维纳过程和伊藤引理)n一、随机过程n1、随机过程n如果某变量的值以某种不确定的方式随时间变化,则称该变量遵循某种随机过程(stochastic process)。 n2、分类n随机过程分为离散时间(discrete time)和连续时间(continuous time)两类。n一个离散时间随机过程是指标的变量值只能在某些确定的时间点上变化的过程n一个连续时间随机过程是指标的变量值的变化可以在任何时刻发生的过程。n随机过程也可分为连续变量(continuous variable)和离散变量(di

2、screte variable)两种过程。 n在连续变量过程中,标的变量在某一范围内可取任意值;n在离散变量过程中,标的变量只可能取某些离散值。二、弱式效率市场假说与马尔可夫过程 n1、效率市场假说n 1965年,法玛(Fama)提出了著名的效率市场假说。该假说认为:n投资者都力图利用可获得的信息获得更高的报酬;n证券价格对新的市场信息的反应是迅速而准确的,证券价格能完全反应全部信息;n市场竞争使证券价格从一个均衡水平过渡到另一个均衡水平,而与新信息相应的价格变动是相互独立的。n2、效率市场分类n效率市场假说可分为三类:弱式、半强式和强式。n弱式效率市场假说认为,证券价格变动的历史不包含任何对

3、预测证券价格未来变动有用的信息,也就是说不能通过技术分析获得超过平均收益率的收益。n半强式效率市场假说认为,证券价格会迅速、准确地根据可获得的所有公开信息调整,因此以往的价格和成交量等技术面信息以及已公布的基本面信息都无助于挑选价格被高估或低估的证券。 n强式效率市场假说认为,不仅是已公布的信息,而且是可能获得的有关信息都已反映在股价中,因此任何信息(包括“内幕信息”)对挑选证券都没有用处。n效率市场假说提出后,许多学者运用各种数据对此进行了实证分析。结果发现,发达国家的证券市场大体符合弱式效率市场假说。 n3、马尔可夫过程n弱式效率市场假说可用马尔可夫随机过程(Markov Stochast

4、ic Process)来表述。n马尔科夫过程(Markov process)是一种特殊类型的随机过程。n这个过程说明只有变量的当前值与未来的预测有关,变量过去的历史和变量从过去到现在的演变方式则与未来的预测不相关。 n股价的马尔科夫性质与弱型市场有效性(the weak form of market efficiency)相一致:n一种股票的现价已经包含了所有信息,当然包括了所有过去的价格记录。n如果弱型市场有效性正确的话,技术分析师可通过分析股价的过去历史数据图表获得高于平均收益率的收益是不可能的。n是市场竞争保证了弱型市场有效性成立。 三、维纳过程n布朗运动起源于物理学中对完全浸没于液体或

5、气体中的小粒子运动的描述,以发现这种现象的英国植物学家Robert Brown命名。n描述布朗运动的随机过程的定义是维纳(wiener)给出的,因此布朗运动又称维纳过程。n股价行为模型通常用布朗运动来描述。n布朗运动是马尔科夫随机过程的一种特殊形式。 (一)标准布朗运动 n变量z是一个随机变量,设一个小的时间间隔长度为t,定义z为在t时间内z的变化。要使z遵循维纳过程,z必须满足两个基本性质:n性质1:z与t的关系满足方程式nz= n其中为服从标准正态分布(即均值为0、标准差为1.0的正态分布)中抽的一个随机值。n性质2:对于任何两个不同时间间隔t,nz的值相互独立。 tn从性质1,我们得到z

6、本身具有正态分布,n z的均值=0n z的标准差=n z的方差=tn性质2则隐含z遵循马尔科夫过程。 t在一段相对长的时间T中z值的增加表示为z(T)-z(0)。这可被看作是在N个长度为t的小时间间隔中z的变化的总量,这里n其中i(i=1,2,N)是从标准正态分布的随机抽样值。 tTNNiitzTz1) 0()(n从性质2中可知,i是相互独立的,从上式可得z(T)z(0)是正态分布的,其中:n z(T)z(0)的均值=0n z(T)z(0)的方差=Nt=Tn z(T)z(0)的标准差=Tn例:n假设一个遵循维纳过程的变量z的最初值为25,以年为单位计时。n在第一年末,变量值服从均值为25;标准

7、差为1.0的正态分布;n第二年末,服从均值为25、标准差为2或1.414的正态分布。 n当t0时,我们就可以得到极限的标准布朗运动: dtdz(二)普通布朗运动 n漂移率(Drift Rate)是指单位时间内变量Z均值的变化值。n方差率(VarianceRate)是指单位时间的方差。n标准布朗运动的漂移率为0,方差率为1.0。n漂移率为0意味着在未来任意时刻z的均值都等于它的当前值。n方差率为1.0意味着在一段长度为T的时间段后,z的方差为1.0T n令漂移率的期望值为a,方差率的期望值为b2,得到变量x的普通布朗运动,用dx定义如下:ndx=adt+bdzn其中a和b为常数。dz遵循标准布朗

8、运动。这个过程指出变量x关于时间和dz动态过程。 n其中第一项adt为确定项,adt项说明了x变量单位时间的漂移率期望值为a。如果缺省bdz项,方程变为:ndx=adtdx/dt=a x=x0+atn其中x0为x在零时刻的值。经过长度为T的时间段后,x增加的值为aT。n第二项bdz是随机项,它表明对x的动态过程添加的噪音或波动率。这些噪声或波动率的值为维纳过程的b倍。 :,.,:,且具有正态分布因此随机抽样值是取自标准正态分布的其中为值的变化后短时间xtbtaxxxttbxtbxtax2的方差的标准差的均值类似的,可得任意时间T后x值的变化具有正态分布,且:n方程:dx=adt+bdzn给出了

9、普通布朗运动,其漂移率(即单位时间平均漂移)的期望值为a,方差率(即单位时间的方差)的期望值为b2。如图:TbxTbxaTx2的方差的标准差的均值(三)Ito过程 n若把变量x的漂移率和方差率当作变量x和时间t的函数,得到另一种类型随机过程,即著名的Ito过程(Ito process)。ndx=a(x,t)dt+b(x,t)dz n n其中,dz是一个标准布朗运动,参数a和b是标的变量x和时间t值的函数。变量x的漂移率为a,方差率为b。n即Ito过程的期望漂移率和方差率都随时间变化而变化。四、股票价格的行为过程 n讨论无红利支付股票价格无红利支付股票价格遵循的随机过程 n1、假定股票价格遵循普

10、通布朗运动的不合理性n这种假定表明股票价格运动具有不变的期望漂移率和方差率。n以S代表股票价格, t时间段股价的变化为S,那么在t时间段,S的均值为at,方差为b2t。此时nat/S代表股票的期望收益率。n这表明承担相同风险的情况下,股价高的获得的收益率低,股价低的获得的收益率高。n这与投资者要求来自股票的期望收益率与股票价格无关的现实不一致。 n2、假定股票价格变化率遵循普通布朗运动的合理性n假设股价变化比率遵循布朗运动。设S遵循期望漂移率为S(为常数)的布朗运动。因此,在短时间间隔t后,S的增长期望值为St,参数是股票的期望收益率。n即:假定S/S的变化遵循普通布朗运动,其期望漂移率为一恒

11、定参数。在短时间间隔t后,S/S的期望值(股票的期望收益率)为。 (1)若股票价格的方差率恒为0,模型即为: n其中So是零时刻的股票价格。以上方程说明了当方差率为0时,股票价格以单位时间为的连续复利方式增长。teSSdtSdSSdtdS0:结果为即(2)股票价格的方差率不为0 n当然,实际上股票价格确实存在着波动率。n一个合理假设是:无论股票价格如何,短时间t后的百分比收益率的方差保持不变。n即,不管股票价格为$50还是$10,投资者认为其收益率的不确定性是相同的。n定义2为股票价格比例变化的方差率,n即2t是t时间后股票价格比例变化(proportional change)的方差;n2S2

12、t是经过t后股票价格的实际变化(actual change)的方差;n因此,S的瞬态方差率(instantaneous variance rate)为2S2。3、股票价格行为的几何布朗运动 n(1)从以上阐述可以得出结论:S可以用瞬态期望漂移率(instantaneous expected drift rate)为S和瞬态方差率为2S2的Ito过程(几何布朗运动)来表达,表示为: dzdtSdSSdzSdtdS:即n几何布朗运动是描述股票价格行为最广泛使用的一种模型。n变量通常被称为股票价格波动率(stock price volatility)。即是股票收益率单位时间的标准差。2表示股票收益率

13、单位时间的方差。n变量为股票在单位时间内以连续复利表示的股票价格的预期收益率(expected rate of return)。n这两个参数假设为常数。dz表示标准布朗运动。n(2)从几何布朗运动可知,在短时间t后,证券价格比率的变化值S/S为:n S/S=t+ n方程的左边是短时间t后股票的收益率。nt项是这一收益率的期望值,n 项是收益率的随机部分。随机部分的方差(也是整个收益的方差)为2t。 tt 可见,S/S也具有正态分布特征,其均值为t,标准差为 ,方差为2t。 n其中(m,s)表示均值为m,标准差为s的正态分布。 tttSS,n短时间t后股票价格比例变化的标准差为 。n作一粗略的近

14、似,在相对长一段时间T后股票价格比例变化的标准差为 。n这就是说,作为近似,波动率可被解释为一年内股票价格变化的标准差。n注意:在一段较长时间T后的股票价格比例变化的标准差并不精确地为 。这是因为比例变化不具有可加性 tTT4、参数的讨论 n(1)参数时间:n在几何布朗运动中,我们涉及两个符号:和,其大小取决于时间计量单位。n若无特别申明,通常以年为时间的计量单位。 n(2)n根据资本资产定价原理,值取决于:n该证券的系统性风险,n无风险利率水平(利率水平越高,投资者要求任一种股票的预期收益率就越高),n市场的风险收益偏好(多数投资者认为,如果承担更大的风险,将要求获得更高的预期收益率。所以值

15、应当取决于股票收益的风险)。n由于后者涉及主观因素,因此的决定本身就较复杂。n然而幸运的是衍生证券的定价与标的资产的预期收益率()是无关的。n因为依附于某种股票的衍生证券的价值一般是独立于的。n(3)n证券价格的波动率对于衍生证券的定价则是相当重要的。n证券价格的波动率可理解为证券价格的“脾气”,我们可以通过历史数据来观察各种证券“脾气”的大小,然后通过几何布朗运动来确定其未来价格的概率分布。n注意,几何布朗运动把当作常数,实际上,证券价格的脾气是会变的。会随时间变化而变化。 5、例n设一种不付红利股票遵循几何布朗运动,其波动率为每年18,预期收益率以连续复利计为每年20,其目前的市价为100

16、元,求一周后该股票价格变化值的概率分布。解:=0.20,=0.18,其股价过程为:dS/S0.20dt十0.18dz在随后短时间间隔后的股价变化为:S/S=0.20t+0.18由于1 周等于0.0192年,因此S=100(0.00384+00249) =0.384+2.49上式表示一周后股价的增加值是均值为0.384元,标准差为2.49元的正态分布的随机抽样值。t 五、Ito定理 n股票期权的价格是该标的股票价格和时间的函数。n更一般地,任何一种衍生证券的价格都是这些标的证券价格和时间的函数。n在这一领域内的一个重要结论由一个叫K.Ito的数学家在1951年发现。n这是在伊藤过程的基础上,由伊

17、藤进一步推导出来的。因此称为Ito定理(Itolemma)。n假设变量 x的值遵循Ito过程:dx=a(x,t) dt+b(x,t)dz 其中,dz是一个维纳过程,a与b是x和t的函数。变量x的漂移率为a和方差率为b2。Ito定理表明x和t的函数G遵循如下过程: 22222222:21:.dz21bxGbxGtGaxGItoGbdzxGdtbxGtGaxGdG方差率是它的漂移率是过程也遵循因此是维纳过程其中n dS=Sdt+Sdz n和为常数。这是股票价格运动的一个合理的模型。n从Ito定理得到S与t的函数G遵循的过程为:SdzSGdtSSGtGSSGdG222221六、Ito定理的应用 (一

18、)应用于股票价格对数变化n1.现在我们用Ito定理推导lnS变化所遵循的随机过程。 dzdtdGGtGSSGS)2(:0,1,1SG:lnSG:2222的过程为得出由于定义n 由于和为常数,这个方程表明了证券价格对数G遵循一个普通布朗运动(一般化的维纳过程)。n它具有恒定的漂移率22和恒定的方差率2。n tTtTSSSStTTSSTSGttTtTGTtTTTT,2lnln:lnln:.ln,ln)(:)(2:,222因此期间的变化为因此在时刻的股票价格是其中时刻的值为的值为时刻方差均值的变化是正态分布之间和将来某一时刻在当前时刻n证券价格对数的变化呈正态分布。n如果一个变量的自然对数服从正态分布,则称这个变量服从对数正态分布。n根据正态分布的特性,从上式可以得到: ),)(2(lnln2tTtTSSTn这表明ST服从对数正态分布。nlnST 的标准差与 成比例。n这说明证券价格对数的不确定性(用标准差表示)与我们考虑的未来时间的长度的平方根成正比。n这就解决了前面所说的证券价格比例变化的标准差与时间不成正比的问题。 tT n 例 1n设A股票价格的当前值为50元,预期收益为每年18%,波动为每年的20%,该股票价格遵循几何布朗运动,且该股票在6个月内不付红利,请问该股票在6个月后的价格ST 的概率分布:n解:6个月后ST的概率分布为:n由于一个正态分布变量取值位于均值左右两个标准

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论