版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、概率论与数理统计期末考试之计算题、解答题(含答案)1. 设A,B是两个事件,求。解:2. 有甲、乙、丙三门火炮同时独立地向某目标射击,命中率分别为0.2,0.3,0.5,求(1)至少有一门火炮命中目标的概率;(2)恰有一门火炮命中目标的概率。解:设事件A,B,C分别表示甲、乙、丙火炮命中目标(1)(2)3. 盒中有10个合格品,3个次品,从盒中一件一件的抽取产品检验,每件检验后不再放回盒中,以X表示直到取到第一件合格品为止所需检验次数,求:(1) X的分布律;(2) 求概率。解:X的全部可能取值为1,2,3,4(1),X的分布律为:X1234(2)4. 某汽车加油站的油库每周需油量X(kg)服
2、从N(500,502)分布.为使该站无油可售的概率小于0.01,这个站的油库容量起码应多大?(注:)解:设这个站油库容量为h(kg)时能满足题目要求,则即,由已知得:,则.5. 从甲乙两个蓄电池厂的产品中分别抽取6个产品,测得蓄电池的容量(A.h)如下:甲厂 140 , 138 , 143 , 141 , 144 , 137; 乙厂135 , 140 , 142 , 136 , 138 , 140设蓄电池的容量服从正态分布,且方差相等,求两个工厂生产的蓄电池的容量均值差的95%置信区间。()解 由已知可得可得,两工厂生产的蓄电池的容量均值差的0.95的置信区间为=-1.47,5.476. 某卷
3、烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,得子样观察值为:甲:25,28,23,26,29,22;乙:28,23,30,25,21,27。假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著水平=0.05,)?(注)解:检验统计量为,的拒绝域为由已知得:于是 7. 某公司所属8个企业的产品销售资料如下表:企业编号产品销售额(万元)销售利润(万元)1234567817022039043048065095010008.112.518.022.026.540.064.069.0要求:计算产品销售额与利润额之间的相关系数。
4、确定利润额对产品销售额的直线回归方程。确定产品销售额为1200万元时利润额的估计值。解答:(1)r=0.9934(2)b=0.0742, a=-7.273(3)x=1200时,y=-7.273+0.07421200=81.77(万元)8. 在其他条件不变的情况下,某种商品的需求量(y)与该商品的价格(x)有关,现对给定时期内的价格与需求量进行观察,得到下表所示的一组数据。价格x(元)106891211910127需求量y(吨)60727056555757535470要求:计算价格与需求量之间的简单相关系数。拟合需求量对价格的回归直线。确定当价格为15元时,需求量的估计值解答:(1)r=-0.8
5、538 (2)b=-3.1209 a=89.74(3)x=15 时,y=89.74-3.120915=42.93(吨)9. 若机床使用年限和维修费用有关,有如下资料: 机床使用年限(年)223455维修费用(元)405452646080计算相关系数,并判断其相关程度。解:说明使用年限与维修费用间存在高度相关。10. 设A、B为两个事件且P(A)=0.6,P(B)=0.7.问:(1)在什么条件下P(AB)取最大值,最大值是多少?(2)在什么条件下P(AB)取最小值,最小值是多少?解:(1),即:,所以(1)当时,最大,且,(2)当时,最小,且。11. 袋中有3个白球和一个红球,逐次从袋中摸球,每
6、次摸出一球,如是红球则把它放回,并再放入一只红球,如是白球,则不放回,求第3次摸球时摸到红球的概率?解:设第次摸球时摸到红球12. 从大批彩色显像管中随机抽取100只,其平均寿命为10000小时,可以认为显像管的寿命服从正态分布.已知均方差小时,在置信度0.95下求出这批显像管平均寿命的置信区间。(注:=1.96)解:这批显像管平均寿命的置信区间为13. 为检验两架光测高温计所确定的温度读数之间有无显著差异,设计了一个试验,用两架仪器同时对一组10只热炽灯丝作观察,得数据如下:X()1050 825 918 1183 1200 980 1258 1308 1420 1550Y()1072 82
7、0 936 1185 1211 1002 1254 1330 1425 1545其中X和Y分别表示用第一架和第二架高温计观察的结果,假设X和Y都从正态分布,且方差相同,试根据这些数据来确定这两只高温计所确定得温度读数之间有无显著差异(=0.05)?(注:)解:根据条件里的问题归结为假设。由于两个总体X和Y的方差未知,但根据条件DX=DY,所以用t检验. 检验统计量为.根据条件由已知得于是,由知假设H0的否定域为由已知得 由于所以不能否定假设H0.因此可以认为两架高温计所确定的温度读数之间无显著差异.14. 设,。在下列三种情况下求的值:(1);(2);(3)。解:(1)由,得,所以。 ; (2
8、)当时, ; (3)。15. 设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球。今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:设事件A=“从甲袋放入乙袋的是白球”, 事件B=“从乙袋中取出两白球”。已知P(B)= P()P()+P()=16. 从某大学到火车站途中有六个路口,假设在各路口遇到红灯的事件相互独立,且概率都是,求:(1)以X表示途中遇到的红灯次数,求X的分布律;(2)以Y表示汽车行驶途中在停止前所通过的路口数,求Y的分布律;(3)求从该大学到火车站途中至少遇到一次红灯的概率。解:(1)(2),, (3)17. 产品的某一指标
9、,已知,未知.现从这批产品中抽取只对该指标进行测定,问需要多大,才能以95%的可靠性保证的置信区间长度不大于0.01?()解:的置信度为0.95的置信区间为:,则,即。18. 某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,均方差为1.60根。现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平=0.05)?()解:, : 检验统计量为,的拒绝域为。计算得,对,由已知得因为,所以不拒绝H0,即可以认为上浆率降低
10、后对断头率没有显著影响。19. 将一枚骰子重复掷n次,试求掷出的最大点数为5的概率。 解:设, n次掷出的点数5,有种不同结果,而n次掷出的点数4,有种不同结果。所以n次掷出的最大点数为5,有种不同结果。故所求概率为 。20. 掷3颗骰子,若已知出现的点数没有两个相同,求至少有一颗骰子是一点的概率。解:设A:出现的点数没有两个相同,B:至少有一个出现一点21. 某种疾病的发病率为0.01,求下列概率的近似值。(1)100个人中恰有一人发病的概率为多少?(2) 100个人中至少有一人发病的概率为多少?解: 设X-100人中发病的人数,则(1)(2)22. 设XN(0,1).求使:(1)P|X|b
11、=0.05; (3)PXb=0.05。 (注:,)解:(1)由,则,即, ,则,由已知得(2)由,则,由已知得:(3)由,即,由已知得,则23. 生产一个零件所需时间(单位:秒),观察25个零件的生产时间得,。试求和的置信区间()。 ()解:的置信度为0.95的置信区间为:的置信度为0.95的置信区间为24. 由累积资料知道甲、乙两煤矿的含灰率分别服从及。现从两矿各抽几个试件,分析其含灰率为:甲矿:24.3,20.8,23.7,21.3,17.4(%);乙矿:18.2,16.9,20.2,16.7(%)。问甲、乙两矿所采煤的平均含灰率是否有显著差异(=0.05)?()解:首先检验两矿含灰率的方
12、差是否相等。 检验统计量为,的拒绝域为:经计算:对:因为0.10022.98615.10,所以不拒绝H0,即可以认为然后检验两矿的平均含灰率是否相等。 检验统计量为,的拒绝域为。经计算: 。25. 一袋中有十个质地、形状相同且编号分别为1、2、10的球.今从袋中任意取出三个球并记录球上的号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率;(3)一个号码为5,另外两个号码一个大于5,一个小于5的概率。解:, (1) 所求概率;(2)所求概率; (3)所求概率 26. 袋中装有5枚正品硬币、3枚次品硬币(次品硬币两面均印有国徽)。从袋中任取一枚硬币,将它投掷3次,已知每次均出现国徽,问这
13、枚硬币是正品硬币的概率是多少?解:设事件A=“所取硬币为正品”,事件B =“所取硬币掷3次均出现国徽”。所求概率为 P(A |B)=P(A) = ,P(B |A) = ,P() = ,P()=1。所以 P(A | B)=。27. 袋中装有编上号码1,2,9的九个性质相同的球,从袋中任取5个球,以X表示所取的5个球中偶数号球的个数,求:(1) X的分布律;(2) 其中至少有两个偶数号球的概率。解:X的全部可能取值为0,1,2,3,4(1),, (2)28. 从大批彩色显像管中随机抽取100只,其平均寿命为10000小时,可以认为显像管的寿命服从正态分布.已知均方差小时,在置信度0.95下求出这批显像管平均寿命的置信区间。(注:)解:这批显像管平均寿命的置
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同范例赠送合同范例
- 同城水分仪采购合同模板
- 公司日常合同范例
- 乙方委托施工合同模板
- 体育器械采购合同范例
- 厂子叉车出售合同范例
- 商店招牌出租合同范例
- 医院委托宣传合同范例
- 2024年度供暖系统安装承包合同
- 公司土地承包合同范例
- 2024年军队文职统一考试《专业科目》管理学试卷(网友回忆版)含解析
- 2024年全国职业院校技能大赛高职组(建筑装饰数字化施工赛项)备赛试题库含答
- 2024国机资本控股限公司招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- DB11-T854-2023占道作业交通安全设施设置技术要求
- DB32T 2618-2023 高速公路工程施工安全技术规范
- 2024年广东省高中学业水平合格考语文试卷真题(含答案详解)
- DPtech-FW1000系列防火墙系统操作手册
- 自动报警合同范本
- 五年级上册小学高年级学生读本第1讲《伟大事业始于梦想》说课稿
- 2024过敏性休克抢救指南(2024)课件干货分享
- 天猫购销合同范本
评论
0/150
提交评论