




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3-幂零矩阵的jordan 标准型 摘要:本文主要对2-幂零矩阵,3-幂零矩阵的jordan标准型进行探讨,对2-幂零矩阵,给出了2-幂零矩阵的jordan标准型的形式,并指出若固定秩,则有唯一的jordan标准型,对n阶3-幂零矩阵,文中推导出其秩的范围和其jordan标准型的个数,并给予证明,若其秩为一固定值,文中推导出了它的jordan标准型的个数,并给予证明。关键词:k-幂零矩阵征值;2-幂零矩阵;3-幂零矩阵;若当形矩阵;jordan标准型;特征多项式;特征根;初等因子;秩0、引言定义1:设(表示复数域c上全体矩阵),若存在正整数k,使得,则称a是幂零指数为k的幂零矩阵记为k-幂零矩
2、阵特别地,当k=2时,即矩阵a满足,称a为2-幂零矩阵当k=3时,即矩阵a满足,称a为3-幂零矩阵。定义2:形式为的矩阵称为j块,其中是复数,由若干个若当块组成的准对角矩阵称为若当形矩阵。定义3:每个阶的复数矩阵a都与一个若当形矩阵相似,这个若当形矩阵除去其中若当块的排列次序外是被矩阵a唯一决定的,它称为a的jordan标准型。目前关于幂零矩阵的jordan标准型,仅有文1的关于2-幂零矩阵的研究探讨,有以下三个性质:性质1:当k=2即复数域c上的n阶2-幂零矩阵a的jordan标准型为,其中(),且至少存在一个j,使即至少存在一个性质2:设c是复数域,而a是c上2-幂零矩阵,设a的秩为r,则
3、,而a的jordan标准型为,其中对角线上有r个。性质3:两个2-幂零矩阵相似的充要条件是它们的秩相同。1、引理引理1.1:a为幂零矩阵的充要条件是a的特征值全为0。 证明:可见文2引理1.2:设,则,而。引理1.3:复数域c上的k-幂零矩阵a的标准型具有形式,其中(),且至少存在一个若当块,使。证明:因为a为幂零矩阵,故a的特征值全为0,于是a的特征多项式为。设幂零矩阵的a的初等因子为可能相同,且),每一个初等因子对应一个j块(),这些j块构成一个若当形矩阵因为a为k-幂零矩阵,所以j中存在即至少存在一个j,使即命题成立。由引理1.3,易证得关于2-幂零矩阵的那三个性质是成立的2、主要结果及
4、证明由引理1.3我们知道n阶k-幂零矩阵a的jordan标准型为,其中(),且至少存在一个j,使当k=2,由推论3,任一个2-幂零矩阵,若它的秩确定,则它有唯一的一种jordan标准型。那么对于k ,(k为大于2的正整数)任一个k-幂零矩阵,若它的秩固定,它是否也有唯一的jordan标准型,若不唯一,它又含有多少种的jordan标准型?下面我们对3-幂零矩阵进行探讨:设a为n 阶3-幂零矩阵,由引理1.3知a的jordan标准型为,(),且,至少存在一个j,使 不妨设,则下面我们对讨论的值的情况()及所对应的a的秩r(下面括号里的数表示秩的大小)n=3n=4n=5n=6n=7n=83=3(2)
5、4=3+1(2)5=3+1+1(2)6=3+1+1+1(2)7=3+1+1+1+1(2)8=3+1+1+1+1+1(2)5=3+2(3)6=3+2+1(3)7=3+2+1+1(3)8=3+2+1+1+1 (3)7=3+2+2(4)8=3+2+2+1(4)6=3+3(4)7=3+3+1(4)8=3+3+1+1(4)8=3+3+2(5)n=9n=10n=11(2)(2)(2)(3)(3)(3)(4)(4)(4)(5)(5)(6)(4)(4)(4)(5)(5)(5)(6)(6)(6)(6)(7)同理我们可以得出的情况将列表,得到阶数为n的3-幂零矩阵,当其秩为r时所含有的不同的jordan标准型的个
6、数(空格表示0)23456789101112131415161718192021222324314151161117112811219112211011222待添加的隐藏文字内容2111122311211223211311223321411223331151122334211611223343217112233443118112233444211911223344532201122334454312111223344554212211223344555322311223344556431241122334455654212511223344556653226112233445566643127
7、11223344556675421281122334455667653229112233445566776431301122334455667775421311122334455667786532321122334455667787643133112233445566778875421341122334455667788865323511223344556677889764313611223344556677889875421由上述表格,我们可以得出定理2.1:n阶3-幂零矩阵,它的秩 证明:利用引理1.3及秩的性质显然。定理2.2:设秩为r的n阶3-幂零矩阵的jordan标准型共有种,其中则
8、若e=1,2,3时,当,则当,若为整数,即存在一个正整数b,使得a+b若不是整数,则为整数,因为所以即存在一个正整数b,使得=a+b则若(e=1,2,3)若当则,当则若 即若,当,则当 若,当,则当 若当,则当 若,若则,若当其中b表示正整数。证明:当时,1) 若讨论的值及秩r(表格中括号里的数表示秩的个数) 令即j(0,3)表示3阶jordan块的值(2)(3)(4)(6c+1)即含1个的a的jordan标准型为的各一个(4)(5)(6)(6c+1)含2个的a的jordan标准型为的各一个(6)(7)(8)(6c+2)含3个的a的jordan标准型为的各一个(4)(5)(6)(6c+1)含4
9、个的a的jordan标准型为的各一个(4)(5)(6)(6c+1)含5个的a的jordan标准型为的各一个同理可得含7个的a的jordan标准型为的jordan形矩阵各一个含8个j(0,3)的a的jordan标准型为的jordan形矩阵各一个含9个j(0,3)的a的jordan标准型为的jordan形矩阵各一个含10个j(0,3)的a的jordan标准型为的jordan形矩阵各一个不妨设可看到数列,当设至少存在x个j(0,3),则有,设至少存在y个j(0,3),则有,即含个j(0,3)的a的jordan标准型为的jordan形矩阵各一个含个j(0,3)的a的jordan标准型为的jordan形
10、矩阵各一个含个j(0,3)的a的jordan标准型为的jordan形矩阵各一个含个j(0,3)的a的jordan标准型为的jordan形矩阵各一个含个j(0,3)的a的jordan标准型为的各一个含个j(0,3)的a的jordan标准型为的一个所以,当即若若2)若同上,讨论的值及秩r,可得含1个j(0,3)的a的jordan标准型为的矩阵各一个含2个j(0,3)的a的jordan标准型为的矩阵各一个含3个j(0,3)的a的jordan标准型为的矩阵各一个含4个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jorda
11、n标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个所以,当即若若3)若,同上,可得含1个j(0,3)的a的jordan标准型为的矩阵各一个含2个j(0,3)的a的jordan标准型为的矩阵各一个含3个j(0,3)的a的jordan标准型为的矩阵各一个含4个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一
12、个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵一个所以,当即若若综上,当时, 若,则若时,若同上讨论可得当时, 1)若时,含1个j(0,3)的a的jordan标准型为的矩阵各一个含2个j(0,3)的a的jordan标准型为的矩阵各一个含3个j(0,3)的a的jordan标准型为的矩阵各一个含4个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan
13、标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个所以,当即若若 2)若时含1个j(0,3)的a的jordan标准型为的矩阵各一个含2个j(0,3)的a的jordan标准型为的矩阵各一个含3个j(0,3)的a的jordan标准型为的矩阵各一个含4个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(
14、0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵一个所以,当即若若3)若时含1个j(0,3)的a的jordan标准型为的矩阵各一个含2个j(0,3)的a的jordan标准型为的矩阵各一个含3个j(0,3)的a的jordan标准型为的矩阵各一个含4个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型
15、为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的各一个含个j(0,3)的a的jordan标准型为的一个所以,当即若若综上,当时, 若,则时,若当时1)若时, 含1个j(0,3)的a的jordan标准型为的矩阵各一个含2个j(0,3)的a的jordan标准型为的矩阵各一个含3个j(0,3)的a的jordan标准型为的矩阵各一个含4个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩
16、阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵一个所以,当时,所以当即若若2)若时含1个j(0,3)的a的jordan标准型为的矩阵各一个含2个j(0,3)的a的jordan标准型为的矩阵各一个含3个j(0,3)的a的jordan标准型为的矩阵各一个含4个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3
17、)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵一个所以,当时,所以,即若若3)若含1个j(0,3)的a的jordan标准型为的矩阵各一个含2个j(0,3)的a的jordan标准型为的矩阵各一个含3个j(0,3)的a的jordan标准型为的矩阵各一个含4个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准
18、型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个所以,当时,即若若综上,当时, 若,则时,若当时1)若时,同上,可得含1个j(0,3)的a的jordan标准型为的矩阵各一个含2个j(0,3)的a的jordan标准型为的矩阵各一个含3个j(0,3)的a的jordan标准型为的矩阵各一个含4个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个个j(0,3)的a的j
19、ordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵一个所以,当时,即即若若2)若时, 含1个j(0,3)的a的jordan标准型为的矩阵各一个含2个j(0,3)的a的jordan标准型为的矩阵各一个含3个j(0,3)的a的jordan标准型为的矩阵各一个含4个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩
20、阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵一个所以,当时,当即若若3)若时,同上,可得含1个j(0,3)的a的jordan标准型为的矩阵各一个含2个j(0,3)的a的jordan标准型为的矩阵各一个含3个j(0,3)的a的jordan标准型为的矩阵各一个含4个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个含个j
21、(0,3)的a的jordan标准型为的矩阵各一个含个j(0,3)的a的jordan标准型为的矩阵各一个所以,当时,所以,当即 若若综上,当时, 若,则时,若推论1:若n阶3-幂零矩阵的秩为r,则它至多存在种jordan标准型; 特别地,当r=2及r=3时,它只有一种jordan标准型。 则有下面推论:推论2:秩不大于3的两个3-幂零矩阵相似的充要条件是它们的秩相等。 由定理2.2,我们还可以得到n阶3-幂零矩阵的所有jordan标准型的个数,即下面定理:定理2.3:设n阶3-幂零矩阵的jordan标准型共有m种,则: 当,若当,若 当,若 当,若 证明:当时,r234567112233-3所以
22、当时当时当时当时,r234567112233所以当时当时当时时,所以r234567112233所以当时当时当时当时,r234567112233-1所以当时 当时当时综上,命题得证。3、 例题22阶3-幂零矩阵,它的秩最大可能达到多少?共存在多少种jordan标准型?若它的秩为8,则存在多少种jordan标准型?若秩为13呢?解:因为,而,所以=14而所以22阶3-幂零矩阵,它的秩最大可能达到多14,共存在40种jordan标准型,若它的秩为8,则存在4种jordan标准型,若秩为13,存在3种jordan标准型 参考文献:1:李殿龙,隋思涟.2-幂零矩阵的jordan标准型j.青岛建筑工程学报
23、.2001,223,(8385)2:韩道兰,罗雁,黄宗文.幂零矩阵的性质及其应用j.玉林师范学院学报(自然科学).2003,244.3:北京大学数学系.高等代数m.高等教育出版社.2001(318319,35055)4:袁秉成.高等代数m.东北师大出版社.1992(180222)5:华罗庚,万哲先.典型群m.科技出版社.1963(4560)6:赵树嫖.线性代数m.中国人民出版社.1997(107)7:张远达.线性代数原理m.上海教育出版社。1997(140)8:陈景良,陈向辉.特殊矩阵m.清华大学出版社.2001(205236)9:程云鹏.矩阵论(第二版)m.西北工业大学出版社.2000(168196)10:p.lancaster and m.tismenetsky. the theory of matrix with applicationm. 2nd edn. acaden press, new york, 19
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省长沙市浏阳市2024-2025学年七年级上学期1月期末道德与法治试题及答案
- 监理师职业规划试题及答案
- 医院科室绩效管理制度
- 完善支撑文件管理制度
- 家具展厅销售管理制度
- 关键工艺设备管理制度
- 存量清理销账管理制度
- 房屋征收公司管理制度
- 大唐公司钥匙管理制度
- 行政管理过程中的透明度分析试题及答案
- 三相异步电动机的正反转
- hec教程用户手册中文版
- 救护车急诊出诊转运风险相关事项告知书
- 六辊轧机轧辊装置的设计
- 初中学生综合素质表现评价档案
- 中国民主同盟入盟申请表
- 电子设备雷击保护导则(GB7450-87)
- 常用音乐术语大全含详细速度值
- 心经注音版(打印版)
- 医院医用耗材及卫生材料采购申请表
- 高压脉冲轨道电路技术规格书
评论
0/150
提交评论