19.3.1 矩形的性质教学设计_第1页
19.3.1 矩形的性质教学设计_第2页
19.3.1 矩形的性质教学设计_第3页
19.3.1 矩形的性质教学设计_第4页
19.3.1 矩形的性质教学设计_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、附件:19.3.1矩形的性质教学设计一、教学目标:1掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系2会初步使用矩形的概念和性质来解决相关问题3渗透运动联系、从量变到质变的观点二、重点、难点1重点:矩形的性质2难点:矩形的性质的灵活应用3难点的突破方法:矩形是在平行四边形的前提下定义的从定义出发,首先应该肯定,矩形是平行四边形,但它是特殊的平行四边形特殊之处就是有一个角是直角所以在教学在我们采用运动方式探索矩形的概念及性质,如用多媒体或教具演示,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系通过教学还要使学生明确:(1)矩形是特殊的平行四边形,(2)矩形只比平

2、行四边形多一个条件:“有一个角是直角”,不能用“四个角都是直角的行四边形是矩形”来定义矩形;(3)矩形是特殊的平行四边形,具有平行四边形的一切性质(共性),还具有它自己特殊的性质(个性)从边、角、对角线方面(可继续演示教具),让学生观察或度量猜想矩形的特殊性质(1)边:对边与平行四边形性质相同,邻边互相垂直(与性质1等价);(2)角:四个角是直角(性质1);(3)对角钱:相等且互相平分(性质2)引导学生利用矩形与平行四边形的从属关系、矩形的概念以及全等三角形的知识,规范证明两条性质及推论并指出:推论叙述了直角三角形中线段的倍分关系,是直角三角形很重要的一条性质,在求线段长或求线段倍分关系时,常

3、用到这个结论矩形ABCD的两条对角线AC,BD把矩形分成四个等腰三角形,即AOB,BOC,COD和DOA让学生证明后熟记这个结论,以便在复杂图形中尽快找到解题的思路三、例题的意图分析例1是教材P87的例1,它是矩形性质的直接使用,它除了用以巩固所学的矩形性质外,对计算题的格式也起了一个示范作用例2与例3都是补充的题目,其中通过例2的讲解是想让学生了解:(1)因为矩形四个角都是直角,所以矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本

4、关系式并能通过例2、例3的讲解使学生掌握解决相关矩形方面的一些计算题目与证明题的方法四、课堂引入1展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象【探究】在

5、一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状 随着的变化,两条对角线的长度分别是怎样变化的? 当是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质矩形性质1 矩形的四个角都是直角矩形性质2 矩形的对角线相等如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD所以能够得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半五、例习题分析例1 (课本P87例1)如图,已知:矩形ABCD的两条对角线相交

6、于点O,AOB=60,AB=4cm,求矩形对角线的长分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得OAB是等边三角形,所以对角线的长度可求解: 四边形ABCD是矩形, AC与BD相等且互相平分 OA=OB又 AOB=60, OAB是等边三角形 矩形的对角线长AC=BD = 2OA=24=8(cm)例2(补充)已知:如图 ,矩形 ABCD,AB长8 cm ,对角线比AD边长4 cm求AD的长及点A到BD的距离AE的长分析:(1)因为矩形四个角都是直角,所以矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计

7、算,这是几何计算题中常用的方法略解:设AD=xcm,则对角线长(x+4)cm,在RtABD中,由勾股定理:,解得x=6 则 AD=6cm(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式: AEDB ADAB,解得 AE 4.8cm例3(补充) 已知:如图,矩形ABCD中,E是BC上一点,DFAE于F,若AE=BC 求证:CEEF分析:CE、EF分别是BC,AE等线段上的一部分,若AFBE,则问题解决,而证明AFBE,只要证明ABEDFA即可,在矩形中容易构造全等的直角三角形证明: 四边形ABCD是矩形, B=90,且ADBC 1=2 DFAE, AFD=90 B=AFD又 AD=AE, ABEDFA(AAS) AF=BE EF=EC此题还能够连接DE,证明DEFDEC,得到EFEC六、师生共同小结 矩形的判定方法分两类:从四边形来判定和从平行四边形来判定 常用的判定方法有三种:定义和两个判定定理遇到具体题目,可根据条件灵活选用恰当的方法七、作业 课本P88页练习第1、2、3题八、板书设计整个板面分三部分:左边上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论