切比雪夫高通滤波器课程设计_第1页
切比雪夫高通滤波器课程设计_第2页
切比雪夫高通滤波器课程设计_第3页
切比雪夫高通滤波器课程设计_第4页
切比雪夫高通滤波器课程设计_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 燕山大学课程设计(论文)任务书课程名称: 数字信号处理课程设计 基层教学单位: 仪器科学与工程系 指导教师:刘永红学 号学生姓名专业(班级)设计题目27切比雪夫高通滤波器设计设计技术参数 采样频率为100Hz,低频、中频、高频信号频率分别为5Hz、15Hz 、30Hz 设计要求产生一个连续信号,包含低频率,中频,高频分量,对其进行采样,进行频谱分析。设计高通滤波器对信号进行滤波处理,观察滤波后信号的频谱。分析该类型滤波器与其他类型低通滤波器(如butterworth)优势及特点参考资料数字信号处理方面资料MATLAB方面资料周次前半周后半周工作计划收集消化资料、学习MATLAB软件,进行相关

2、参数计算。编写仿真程序、调试。指导教师签字基层教学单位主任签字说明:1、此表一式四份,系、指导教师、学生、各一份,报送院教务一份。 2、学生那份任务书要求装订到课程设计报告前面。电气工程学院 教务科前言随着科学技术的发展,信号处理理论和分析方法已应用于许多领域和学科中。信号处理方面的课程,是工科专业非常实用的课程。在对信号进行分析处理时,信号中经常伴有噪声。根据有用信号和噪声的不同特征,消除或削弱干扰噪声、提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。在对信号进行传输、检测及估计的过程中,都要广泛的使用滤波器。当信号和噪声的频带不同时,可使用具有选频特性的经典滤波器。本质上说,滤波

3、就是改变信号中各频率分量的相对幅度和相位。根据滤波器的信号性质,可将其划分为模拟滤波器和数字滤波器。模拟滤波器处理掉是连续信号,数字滤波器处理的是离散时间信号。本文通过对采样信号进行频谱分析和利用设计的切比雪夫高通滤波器对采样信号进行滤波处理,并对仿真结果进行分析和处理。应用了MATLAB设计切比雪夫高通滤波器过程中常用到的工具和命令。利用MATLAB设计函数直接实现切比雪夫滤波器的设计,介绍了切比雪夫滤波器的基本理论和设计思想,给出了基于MATLAB设计切比雪夫高通滤波器的具体步骤和利用MATLAB产生一个包含低频、中频、高频分量的连续信号,并实现对信号进行采样和分析以及与其他类型的滤波器的

4、比较。 第一章 数字滤波器的概述-2 1.1 数字滤波器的设计方法-2 1.2 数字滤波器的性能要求-2 1.3 数字滤波器的技术要求- 2第二章 基于切比雪夫I型无限脉冲响应IIR数字高通滤波器的设计依据和原理-3 2.1 课设任务-3 2.2 IIR数字滤波器-4 2.3由模拟滤波器设计IIR数字滤波器-5 2.4 数字高通滤波器的设计(本设计采用双线性变换法)-7第三章 基于切比雪夫I型无限脉冲响应IIR数字高通滤波器的具体设计过程-9 3.1 计算过程-9 3.2 用MATLAB设计程序-12 3.3切比雪夫滤波器与巴特沃兹滤波器的比较-17 第四章 总结 -17 4.1心得体会-17

5、 4.2参考文献-18第 1 页 共 18 页第一章 数字滤波器的概述1.1 数字滤波器的设计方法 数字滤波器的设计方法有多种,如双线性变换法、窗函数设计法、插值逼近法和Chebyshev逼近法等等。1.2 数字滤波器的性能要求我们在进行滤波器设计时,需要确定其性能指标。一般来说,滤波器的性能要求往往以频率响应的幅度特性的允许误差来表征。以低通滤波器特性为例,频率响应有通带、过渡带及阻带三个范围。如图1-1所示:在通带内:在阻带中:其中 为通带截止频率,为阻带截止频率,为通带最大衰减, 为阻带最大衰减。 图1-1 低通滤波器的幅频特性指标示意图1.3 数字滤波器的技术要求滤波器技术要求主要包括

6、4个方面。即:第 2 页 共 18 页滤波器的截止频率低通滤波器的截止频率主要包括通带截止频率(又称通带上线频率)和阻带下限截止频率;高通滤波器的截止频率主要包括通带截止频率(下限频率)和阻带上限截止频率;带通滤波器的截止频率主要包括通带下限截止频率,通带上限截止频率,下限通带截止频率,以及上阻带截止频率;带阻滤波器的截止频率与带通滤波器一致,也主要包括通带下限截止频率,通带上限截止频率,下阻带截止频率,以及上阻带截止频率。带通带阻的容限滤波器中带通带阻的容限与的具体技术指标,往往由允许的最大衰减及阻带应达到的最小衰减给出。通带及阻带的衰减,分别定义为: 式中均假定已被归一化为1.例如当在处下

7、降为0.707时,在处降到0.01时,.第二章 基于切比雪夫I型无限脉冲响应IIR数字高通滤波器的设计依据和原理2.1 课设任务产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析。设计高通滤波器对信号进行处理,观察滤波后信号的频谱。要求通带截止频率fp=30Hz,通带衰减rp=0.1dB;阻带截止频率fr=20Hz,阻带衰减rs=40dB。采样频率fs=100Hz,采用切比雪夫I第 3 页 共 18 页型IIR滤波器。2.2 IIR数字滤波器 IIR数字滤波器设计原理(a)按一定规则将给出的数字滤波器的技术指标转换为模拟滤波器的技术指标;(b)根据转换后的技术指标设计模拟低

8、通滤波器;(c)在按一定规则将转换为。若所设计的数字滤波器是低通的,那么上述设计工作可以结束,若所设计的是高通、带通或者带阻滤波器,那么还有步骤:(d)将高通、带通或者带阻数字滤波器的技术指标先转化为低通滤波器的技术指标,然后按上述步骤(b)设计出模拟低通滤波器,再由冲击响应不变法或双线性变换将转换为所需的。s-z映射的方法有:冲激响应不变法、阶跃响应不变法、双线性变换法等。下面讨论双线性变换法。双线性变换法是指首先把s 平面压缩变换到某一中介平面s1 的一条横带(宽度为,即从到) ,然后再利用的关系把s1平面上的这条横带变换到整个z 平面。这样s 平面与z 平面是一一对应关系, 消除了多值变

9、换性, 也就消除了频谱混叠现象。s 平面到z 平面的变换可采用 (2-5) (2-6)令 有: (2-7)从s1 平面到z 平面的变换,即 (2-8)代入上式,得到: (2-9)一般来说,为使模拟滤波器的某一频率与数字滤波器的任一频率有对应关系,可引入代第 4 页 共 18 页定常数c, (2-10) 则 (2-11) 这种s 平面与z 平面间的单值映射关系就是双线性变换。有了双线性变换,模拟滤波器的数字化只须用进行置换。2.3由模拟滤波器设计IIR数字滤波器理想的滤波器是非因果的,即物理上不可实现的系统。工程上常用的模拟滤波器都不是理想的滤波器。但按一定规则构成的实际滤波器的幅频特性可逼近理

10、想滤波器的幅频特性,例如巴特奥兹(Butterworth)、切比雪夫(Chebyshev)滤波等。切比雪夫滤波器的原理:特点:误差值在规定的频段上等幅变化。巴特沃兹滤波器在通带内幅度特性是单调下降的,如果阶次一定,则在靠近截止频率处,幅度下降很多,或者说,为了使通常内的衰减足够小,需要的阶次很高,为了克服这一缺点,采用切比雪夫多项式逼近所希望 。 切比雪夫滤波器的 在通带范围内是等幅起伏的,所以同样的通带衰减,其阶数较巴特沃兹滤波器要小。可根据需要对通带内允许的衰减量(波动范围)提出要求,如要求波动范围小于1db。 振幅平方函数为(3-7)式中 有效通带截止频率与通带波纹有关的参量,大,波纹大

11、,。N阶切比雪夫多项式,定义为(3-8)第 5 页 共 18 页(3-9)如图3-1,通带内 ,,变化范围,随着,(迅速趋于零)当时,(3-10)N为偶数,, (3-11)N为奇数,, (3-12)有关参数的确定:a. 通带截止频率 ,预先给定;b. 由通带波纹表为 (3-13)(3-14)给定通带波纹值分贝数 后,可求。(3-15)c. 阶数N由阻带的边界条件确定。(,A事先给定)(3-16)第 6 页 共 18 页(3-17) (3-19)得 (3-20)2.4 数字高通滤波器的设计(本设计采用双线性变换法)双线性变换法的原理:双线性变换法是采用非线性频率压缩的方法,将整个频率轴上的频率范

12、围压缩到之间,再用转换到Z平面上。也就是说,第一步先将整个S平面压缩映射到S1平面的一条横带里;第二步再通过标准变换关系将此横带变换到整个Z平面上去。这样就使S平面与Z平面建立了一一对应的单值关系, 消除了多值变换性,也就消除了频谱混叠现象,映射关系如图所示。图1-2 映射关系为了将S平面的整个虚轴压缩到S1平面轴上的段上,可以通过以下的正切变换实现当由经过0变化到时,由-经过0变化到+,也即映射了整个轴。将式(3-5)写成第 7 页 共 18 页将此关系解析延拓到整个S平面和S1平面,令则得再将S1平面通过以下标准变换关系映射到Z平面从而得到S平面和Z平面的单值映射关系为: (3-6) (3

13、-7) 式(3-6)与式(3-7)是S平面与Z平面之间的单值映射关系,这种变换都是两个线性函数之比,因此称为双线性变换式(3-5)与式(3-6)的双线性变换符合映射变换应满足的两点要求。首先,把,可得 (3-8)即S平面的虚轴映射到Z平面的单位圆。其次,将代入式(3-8),得因此由此看出,当时,;当时,。也就是说,S平面的左半平第 8 页 共 18 页面映射到Z平面的单位圆内,S平面的右半平面映射到Z平面的单位圆外,S平面的虚轴映射到Z平面的单位圆上。因此,稳定的模拟滤波器经双线性变换后所得的数字滤波器也一定是稳定的. 本设计总体设计步骤为:(1) 确定数字高通滤波器的技术指标、;(2) 将数

14、字高通滤波器的技术指标转换成高通模拟滤波器的技术指标,转换公式为;(3)利用频率变换将模拟高通滤波器技术指标转换成归一化模拟低通滤波器G(p)的技术指标;(4)设计模拟低通滤波器G(p),并去归一化得:(5) 采用双线性变换将模拟低通滤波器H(s)转换成数字低通滤波器H(z): (6) 采用频带变换,将数字低通滤波器转换成所需类型的数字高通滤波器。 第三章 基于切比雪夫I型无限脉冲响应IIR数字高通滤波器的具体设计过程3.1 计算过程(1) 数字高通滤波器的技术指标: fp=30,rp=0.1fr=20,rs=40,fs=100wp=0.6,ws=0.4(2) 将数字高通滤波器的技术指标转换成

15、模拟高通滤波器的技术指标(令T=2s):第 9 页 共 18 页 (3)相应低通滤波器的技术指标: (4) 设置归一化低通模拟滤波器G(p)各项指标: (5) 将极点,和代入,求低通模拟滤波器G(p):第 10 页 共 18 页可得:归一化:(6) 利用双线性变换将模拟低通传输函数转换为数字低通滤波器系统函数: (7)用频带变换法将数字低通转换成数字高通:第 11 页 共 18 页3.2用MATLAB设计程序输入信号t=1:100;s1=sin(2*pi*t*5);s2=sin(2*pi*t*15);s3=sin(2*pi*t*30);s=s1+s2+s3;plot(t,s)xlabel(时间

16、(s)ylabel(幅值)第 12 页 共 18 页对输入信号采样Fs=100;t=(1:100)/Fs;s1=sin(2*pi*t*5);s2=sin(2*pi*t*15);s3=sin(2*pi*t*30);s=s1+s2+s3;plot(t,s)xlabel(时间(s)ylabel(幅值)第 13 页 共 18 页切比雪夫高通滤波器的设计Rp=0.1;Rs=40;Wp=30*2/Fs;fr=20;n,Wn=cheb1ord(Wp,2*fr/Fs,Rp,Rs,s);b,a=cheby1(n,Rp,Wn,high);H,w=freqz(b,a,512);plot(w*Fs/(2*pi),ab

17、s(H);xlabel(频率(Hz);ylabel(频率响应图);grid;第 14 页 共 18 页对滤波后的信号进行分析和变换 sf=filter(b,a,s);plot(t,sf);xlabel(时间 (s);ylabel(幅值);axis(0 1 -1 1);S=fft(s,512);SF=fft(sf,512);w=(0:255)/256*(Fs/2);plot(w,abs( SF(1:256);xlabel(频率(Hz);ylabel(傅立叶变换图);grid;第 15 页 共 18 页对滤波前后的信号进行变换对比sf=filter(b,a,s);plot(t,sf);xlabel

18、(时间 (s);ylabel(幅值);axis(0 1 -1 1);S=fft(s,512);SF=fft(sf,512);w=(0:255)/256*(Fs/2);plot(w,abs(S(1:256) SF(1:256);xlabel(频率(Hz);ylabel(傅立叶变换图);grid;legend(before,after);第 16 页 共 18 页3.3切比雪夫滤波器与巴特沃兹滤波器的比较 切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动。 如果需要快速衰减而允许通频带存在少许幅度波动,可用第一类切比雪夫滤波器;如果需要快速衰减而不允许通频带存在幅度波动,可用第二类切比雪夫滤波器。第4章 总结4.1 心得体会在课程设计刚刚开始的时候,觉得很无助,于是请教同学、上网搜资料、去图书馆查找等等,终于功夫不负有心人,在不断的资料搜寻当中我渐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论