版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米秒、22米秒和33米秒,求他过桥的平均速度.解析:假设上坡、平路及下坡的路程均为66米,那么总时间=6611+6622+6633=6+3+2=11(秒),过桥的平均速度=66311=18(米/秒)2. 从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米时的速度,到达山顶后以60千米时的速度下山.求该车的平均速度.解析:设两地距离为:(千米),上山时间为:(小时),下山时间为:(小时),所以该飞机的平均速度为:
2、(千米)。3. 汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。求该车的平均速度。解析:想求汽车的平均速度=汽车行驶的全程总时间 ,在这道题目中如果我们知道汽车行驶的全程,进而就能求出总时间,那么问题就迎刃而解了。在此我们不妨采用“特殊值”法,这是奥数里面非常重要的一种思想,在很多题目中都有应用。把甲、乙两地的距离视为1千米,总时间为:172+148,平均速度=2(172+148)=57.6千米/时。 我们发现中的取值在计算过程中不太方便,我们可不可以找到一个比较好计算的数呢?在此我们可以把甲、乙两地的距离视为72,48=144千米,这样计算时间时就好计算一些,平
3、均速度=1442(14472+14448)=57.6千米/时。4. 一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?解析:假设每条边长为200厘米,则总时间=20050+20020+20040=4+10+5=19(分钟),爬行一周的平均速度=200319=(厘米/分钟)。5. 赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?解析:上山3千米/小时,平路4千米/小时
4、,下山6千米/小时。假设平路与上下山距离相等,均为12千米,则首先赵伯伯每天共行走千米,平路用时小时,上山用时小时,下山用时小时,共用时小时,是实际3小时的4倍,则假设的48千米也应为实际路程的4倍,可见实际行走距离为千米。方法二:设赵伯伯每天走平路用小时,上山用小时,下山用小时,因为上山和下山的路程相同,所以,即由题意知,所以因此,赵伯伯每天锻炼共行(千米),平均速度是(千米/时)6. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。解析:假设上坡、走平路及下
5、坡的路程均为24米,那么总时间为:244+246+248=13(秒),过桥的平均速度为(米/秒)7.小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?解析:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了2425=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走6006=100米。总路程就是=10030=3000米。8. 甲、乙两船在相距100千米的A、B两港间航行甲上行
6、全程需用10小时,乙上行全程需用6小时40分钟甲下行全程需用5小时,请问:乙下行全程需用几个小时?甲的顺水速度为:1005=20(千米小时),甲的逆水速度为:10010=10(千米小时);水速=(甲的顺水速度一甲的逆水速度)2=(2010)2=5(千米小时);乙船的逆水速度为:100=100=15(千米小时);乙船的船速=15+5=20(千米小时);乙船的下行时间为:100+(20+5)=4(小时)9. 一条河的水流速度是每小时3千米,一条船从此河的上游A地顺流到达下游的C地,然后掉头逆流向上到达中游的B地,共用8小时.已知这条船的顺流速度是逆流速度的2倍,A地与B地相距24千米.求A、C两地
7、间的距离。顺流速度比逆流速度多1倍,那么逆流速度为水速的2倍.逆流速度:32=6(千米/小时);顺流速度:62=12(千米/小时);从A-B航行时间为:2412=2 小时;剩下路程所用的时间:8-2=6小时;因为:BC=顺水速度顺水时间=逆水速度逆水时间,所以,逆水航行的时间=2顺水航行的时间,那么顺水航行BC这段路程用时间:6(2+1) 1=2小时,BC=212=24(千米),AC=24+24=48(千米).10. 一艘小船在河中航行,第一次顺流航行33千米,逆流航行11千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米.这艘小船的静水速度和水流速度是多少?(法1
8、)两次航行顺流的路程差:33-24=9 (千米),逆流的路程差:14-11=3 (千米),也就是说顺流航行9千米所用的时间和逆流航行3千米所用时间相同,那么顺流航行33千米与逆流航行333=11 (千米)时间相同,则逆流速度:(11+11)11=2(千米/小时),同样可得顺流速度为:(24+143)11=6(千米/小时),静水速度:(6+2)2=4(千米/小时),水流速度:(6-2)2=2(千米/小时).(法2)根据顺流航行9千米所用的时间和逆流航行3千米所用时间相同,9千米=顺流速度时间=逆流速度3倍的时间,可得:顺流速度=3逆流速度,而后仿照法1部分思路解答.11. 、B两港相距560千米
9、,甲船往返两港需要105小时,逆流航行比顺流航行多了35小时,乙船的静水速度是甲船静水速度的2倍,那么乙船往返两港需要多少小时?先求出甲船往返航行的时间分别是:(105+35)2=70小时,(105-35)2=35.再求出甲船逆水速度每小时56070=8千米,顺水速度每小时56035=16千米,那么甲船在静水中的速度是每小时(16+8)2=12千米,水流的速度是每小时12-8=4千米,乙船在静水中的速度是每小时122=24千米,所以乙船往返一次所需要的时间是560(24+4)+560(24-4)=20+28=48小时.12. 一只帆船的速度是每分60米,船在水流速度为每分20米的河中,从上游的
10、一个港口到下游某一地,再返回到原地,共用了3小时30分,这条船从上游港口到下游某地共走了多少米?3小时30分=360+30=210(分),顺水速度=60+20=80(米分),逆水速度=6020=40(米分)又因为:顺水速度顺水时间=逆水速度逆水时间,逆水时间=2顺水时间,把顺水时间看成1份,那么顺水时间=210(2+1)=70(分),从上游港口到下游港口共走了8070=5600(米)13. 某船从甲地顺流而下,5天到达乙地;该船从乙地返回甲地用了7天问:水从甲地流到乙地用了多少时间? (法1)水流的时间=甲乙两地间的距离水速,而此题并未告诉我们“甲乙两地间距离”,且根据已知,顺水时间及逆水时间
11、也无法求出,而它又是解决此题顺水速度、逆水速度和水速的关键将甲、乙两地距离看成单位“1”,则顺水每天走全程的,逆水每天走全程的水速=(顺水速度一逆水速度)2=,所以水从甲地流到乙地需:(天).当然,我们还可以把甲乙两地的距离设成其他方便计算的数字,这其实就是特殊值代入法!(法2)用方程思路,5(船速水速)=7(船速水速),即 船速=6水速,所以轮船顺流行5天的路程等于水流55535(天)的路程,即木筏从A城漂到B城需35天.(法3)逆水比顺水多2天到达,即船要多行驶2天,为什么会多2天呢,因为顺水时得到了5天的水速帮助,逆水时又要去克服7天的水速,这一切都是靠2天的船速所实现的,即船速等于6天
12、的水速;所以轮船顺流行5天的路程等于水流55635(天)的路程,即木筏从A城漂到B城需35天.14. 一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时求:这两个港口之间的距离两港口间的距离=顺水速度顺水时间=(船速+水速)顺水时间=(船速+6)4 ;两港口间的距离=逆水速度逆水时间=(船速-6)7;所以可得:(船速+6)4=(船速-6)7,解得:船速=22,可得两港口间的距离为:(22+6)4=(226) 7=112(千米)15. 甲、乙两人从相距40千米的A、B两地相向而行,甲以每小时3千米的速度从A地出发,乙以每小时5千米的速度从B地出发,此时风速是每小
13、时2千米,若甲顺风行走,那么他们几小时后相遇?相遇地点距A地多远?【解析】甲的实际速度:3+2=5(千米/小时),乙的实际速度:5-2=3(千米/小时),相遇时间:40(5+3)=5(小时),甲行走的路程:55=25(千米).16. 轮船从A城到B城需行3天,而从B城到A城需行4天.从A城放一个无动力的木筏,它漂到B城需多少天?【解析】(法1)逆水比顺水多一天到达,即船要多行驶一天,为什么会多一天呢,因为顺水时得到了三天的水速帮助,逆水时又要去克服四天的水速,这一切都是靠一天的船速所实现的,即船速等于7天的水速;所以轮船顺流行3天的路程等于水流33724(天)的路程,即木筏从A城漂到B城需24
14、天.(法2)用方程的思想,3(船速水速)=4(船速水速),即船速=7水速.(法3)用特殊值代入法,可以把全城看成1,或者假设成其它方便计算的数值.17. 甲轮船和自漂水流测试仪同时从上游的A站顺水向下游的B站驶去,与此同时乙轮船自B站出发逆水向A站驶来. 7.2时后乙轮船与自漂水流测试仪相遇. 已知甲轮船与自漂水流测试仪2.5时后相距31.25千米,甲、乙两船航速相等,求A,B两站的距离.【解析】因为测试仪的漂流速度与水流速度相同,所以若水不流动,则7.2时后乙船到达A站,2.5时后甲船距 A站 31.25千米,由此求出甲、乙船的航速为310.252.512.5(千米时), A,B两站相距12
15、.57.2=90(千米).18. 一条河上有甲、乙两个码头,甲在乙的上游50千米处。客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变。客船出发时有一物品从船上落入水中,10分钟后此物距客船5千米。客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇,水流的速度是多少?【解析】10分钟后此物距客船5千米,可以求到51/6=30(千米/时),静水速度为30千米/时 物体与货船的相遇时间为:5030=5/3(小时),客船与货船同时同向而行,说明它们的距离时相同的!相遇时间为:50(30+30)=5/6(小时),逆水行了20千米所花的时间为5/3-5/6=5/6(小时
16、),逆水速为:205/6=24(千米/时),水流的速度为:30-24=6(千米/时)19. A城在一条河的上游,B城在这条河的下游.A、B两城的水路距离为396千米。一艘在静水中速度为每小时12千米的渔船从B城开往A城,一艘在静水中速度为每小时30千米的治安巡逻船从A城开往B城.已知河水的速度为每小时6千米,从A流向B.两船在距离A城180千米的地方相遇.巡逻艇在到达B城后得到消息说他们刚才遇到的那艘渔船上有一名逃犯,于是巡逻艇立刻返回去追渔船,请问巡逻艇能不能在渔船到达A城之前追上渔船?如果能的话,请问巡逻艇在距A城多远的地方追上渔船;如果不能的话,请算出巡逻艇比渔船慢多少小时到A城?【解析
17、】可以追上,开始时,渔船的速度为每小时12-6=6(千米),巡逻船的速度为每小时30+6=36(千米).巡逻艇到B用(396-180)36=6(小时). 此时渔船距离A有180-66=144(千米),巡逻艇的速度变为每小时30-6=24(千米).追上渔船用时(396-144)18=14(小时).追上时渔船又走了146=84(千米),距离A有144-84=60(千米).20. 某人畅游长江,逆流而上,在A处丢失一只水壶,他向前又游了20分钟后,才发现丢失了水壶,立即返回追寻,在离A处2千米的地方追到,则他返回寻水壶用了多少分钟?【解析】该人丢失水壶后继续逆流而上20分钟,水壶顺流而下:速度和=该
18、人的逆水速度+水速=该人的静水速度-水速+水速=该人的静水速度,该人与水壶的距离=二者速度和时间=20该人的静水速度该人发现水壶丢失后返回,与水壶一同顺流而下二者速度差=该人的静水速度,追及距离=该人的静水速度追及时间,追及时间=2水速,所以有:20该人的静水速度=2水速该人的静水速度,所以水速=1/10,追及时间=2水速=20分钟.【温馨提示】本题中应注意到相背而行的速度和与相向而行的速度差是相等的.21. 一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时. 求水流的速度.【解析】两次航行顺流的路程差:120-60=60(千米),逆流的路
19、程差:120-80=40(千米),也就是说顺流航行60千米所用的时间和逆流航行40千米所用时间相同,即顺流航行3千米所用的时间和逆流航行2千米所用时间相同. 一艘轮船顺流航行120千米,逆流航行80千米共用16时,相当于顺水航行120+8023=240千米用16小时,逆水航行80+12032=160千米用去16小时,所以顺水速度为15千米/小时,逆水速度为10千米/小时,水流速度为(1510)22.5(千米时).22. 有一个小孩不慎掉进河里,他抱住了一根圆木沿河向下漂流. 有3条船逆水而上,在对应着河岸上的A处同时与圆木相遇,但是都没有发现圆木上有小孩. 3条船的速度是已知的而且大小不同,当
20、3条船离开A处一小时以后,船员们同时从无线电中听到圆木上有小孩,要求营救的消息,因此3条船同时返回,去追圆木. 当天晚上,孩子的父母被告知,小孩已在离A处6千米的下游B处,被救起. 问:是3条船中的哪条船首先来到孩子抱住的圆木处救起了孩子?【解析】考虑任一条船,船离开圆木时,它的速度是静水中的速度减去水速,而圆木的速度为水速,所以一小时后船离小孩的距离为船一小时在静水中的路程. 当船追圆木时,船速是静水中的速度加上水速,圆木速度仍为水速,因此船会在一小时后追上圆木. 对其他两条船也是如此. 故3条船是同时来到圆木处的.23. 一艘轮船顺流航行80千米,逆流航行48千米共用9时;顺流航行64千米
21、,逆流航行96千米共用12时. 求轮船的速度.【解析】由于两次航行的时间不相等,可取两次时间的最小公倍数,等价地化为相等时间的两次航行. 将题目进行改编可以得到:“一艘轮船顺流航行804=320千米,逆流航行484=192千米共用94=36小时;顺流航行643=192千米,逆流航行963=288千米共用123=36小时.” 也就是说,顺流航行128千米所用的时间和逆流航行96千米所用时间相同,即顺流航行4千米所用的时间和逆流航行3千米所用时间相同.所以顺水速度为:(80+4834)9=16(千米时),逆水速度为:(8043+48)9=12(千米时),轮船速度为:(16+12)2=14(千米时)
22、.24. 甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出,3小时后相遇已知水流速度是4千米小时求:相遇时甲、乙两船航行的距离相差多少千米?【解析】为了求出相遇时两船航行的距离相差多少,若考虑将两船的各自航程分别求出的话,需根据:航程=速度时间,要求出两船的顺水速度或逆水速度,即要求两船(在静水中)的船速而由已知条件分析,船速无法求出下面我们来分析一下,在两船的船速相同的情况下,一船顺水,一船逆水,它们的航程差是什么造成的,不妨设甲船顺水,乙船逆水甲船的顺水速度=船速+水速,乙船的逆水速度=船速一水速,故:速度差=(船速+水速)一(船速一水速)=2水速,即:每小时甲船比乙船多走24=
23、8(千米)3小时的距离差为38=24(千米)25. 轮船从A城到B城需行3天,而从B城到A城需行4天.从A城放一个无动力的木筏,它漂到B城需多少天?【解析】(法1)逆水比顺水多一天到达,即船要多行驶一天,为什么会多一天呢,因为顺水时得到了三天的水速帮助,逆水时又要去克服四天的水速,这一切都是靠一天的船速所实现的,即船速等于7天的水速;所以轮船顺流行3天的路程等于水流33724(天)的路程,即木筏从A城漂到B城需24天.(法2)用方程的思想,3(船速水速)=4(船速水速),即船速=7水速.(法3)用特殊值代入法,可以把全城看成1,或者假设成其它方便计算的数值.26. 一艘轮船在两个港口间航行,水
24、速为每小时6千米,顺水下行需要4小时,返回上行需要7小时求:这两个港口之间的距离?【解析】行程问题之流水行船 (船速+6)4=(船速-6)7,可得船速=22,两港之间的距离为:(22+6)4=112千米 27. 轮船用同一速度往返于两码头之间,它顺流而下行了个小时,逆流而上行了小时,如果水流速度是每小时千米,两码头之间的距离是多少千米?【解析】由题意可知,(船速)(船速),可得船速千米/时,两码头之间的距离为(千米)28. 乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?【解析】乙船顺水速度:1202=60(千米/小时
25、).乙船逆水速度:1204=30(千米/小时)。水流速度:(60-30)215(千米/小时).甲船顺水速度:12O34O(千米/小时)。甲船逆水速度:40-215=10(千米/小时).甲船逆水航行时间:12010=12(小时)。甲船返回原地比去时多用时间:12-3=9(小时)29. 某项竞赛分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的倍,每个二等奖的奖金是每个三等奖奖金的倍。如果评出一、二、三等奖各人,那么每个一等奖的奖金是元。如果评出个一等奖,个二等奖,个三等奖,那么一等奖的奖金是多少元?分析:我们把每个三等奖奖金看作份,那么每个二等奖奖金是份,每个一等奖奖金则是份。当一、二
26、、三等奖各评人时,个一等奖的奖金之和是元,个二等奖的奖金之和等于个一等奖的奖金元,个三等奖的奖金等于个二等奖奖金元。所以奖金总额是:元。当评个一等奖,个二等奖,个三等奖时,个一等奖奖金看做份,个二等奖奖金(份),个三等奖奖金的份数是(份),总份数就是:(份)。这样,可以求出份数为元,一等奖奖金为:(元)。30. 甲、乙、丙三所小学学生人数的总和为,已知甲校学生人数的倍,乙校学生人数减,丙校学生人数加都是相等的,问:甲、乙、丙各校的人数是多少?分析:甲校学生人数为:,乙校学生人数为:,丙校学生人数为:。甲、乙、丙三校的人数分别为,。31. 有堆苹果,较小的堆平均有个苹果。较大的堆,苹果数之差为个
27、。又较大的堆平均有个苹果,较小的堆苹果数之差为个。最大堆与最小堆平均有个苹果。问:每堆各有多少个苹果?分析:最大堆与最小堆共个苹果。较大的堆与较小的堆共个苹果。所以中间的一堆有:个苹果;较大的堆有:个苹果;最大的一堆有:个苹果;次大的一堆有:个苹果;较小的堆有:个苹果;次小的一堆有:个苹果;最小的一堆有:个苹果。32. 某日停电,房间里同时点燃了两支同样长的蜡烛。这两支蜡烛的质量不同,一支可以维持小时,另一支可以维持小时,当送电时吹灭蜡烛,发现其中一支剩下的长度是另一支剩下长度的倍。这次停电时间是多少小时?分析:两支蜡烛长度相同,一支可以维持小时,另一支可以维持小时,所以从两支蜡烛中取相同长度
28、的部分,可以燃烧的时间之比为。现在可以维持小时的那支蜡烛剩下的长度是另外一支的倍,所以剩下的部分可以燃烧的时间是另外一只剩下部分可以燃烧时间的倍,由于燃烧了相同的时间,所以这支剩下的部分可以燃烧的时间比另外一只剩下部分可以燃烧的时间要长小时。所以另外一支剩下的部分可以燃烧的时间为小时,这次停电的时间为小时。33. 小明、小红、小玲共有块糖。如果小玲吃掉块,那么小红与小玲的糖就一样多;如果小红给小明块糖,那么小明的糖就是小红的糖的倍。问小红有多少块糖?分析:如果小玲吃掉块,那么小红与小玲的糖就一样多,说明小玲比小红多块;如果小红给小明块糖,那么小明的糖就是小红的糖的倍,即小明的糖加是小红的糖减后
29、的倍,说明小明的糖是小红的糖的倍少块。所以,小红有块糖。34. 有只盒子,每只盒内放有同一种笔。只盒子所装笔的支数分别为支、支、支、支、支、支、支、支。在这些笔中,圆珠笔的支数是钢笔支数的倍,铅笔支数是钢笔支数的倍,只有一只盒里放的是水彩笔。这盒水彩笔共有多少支?分析:铅笔数是钢笔数的倍,圆珠笔数是钢笔数的倍,因此这三种笔支数的和是钢笔数的倍。除以余,所以水彩笔的支数除以余,在上述盒的支数中,只有除以余,因此水彩笔共有支。35. 现在哥哥的年龄恰好是弟弟年龄的倍。而年前哥哥的年龄是弟弟年龄的倍,则哥哥现在的年龄是_岁。分析:把弟弟年前的年龄看作是份,那么哥哥年前的年龄是份,年龄之差为份。现在弟
30、弟的年龄为“份加上岁”,哥哥的年龄是弟弟年龄的倍,所以年龄之差为“份加上岁”,所以份的年龄为岁,哥哥现在的年龄为岁。36、在三角形ABC内有100个点,以三角形的顶点和这100点为顶点,可把三角形剖分成多少个小三角形?分析:整体法100个点每个点周围有360度,三角形本身内角和为180度,所以可以分成(360100+180)180=201个小三角形37、幼儿园大班每人发张画片,小班每人发张画片,小班人数是大班人数的倍,小班比大班多发张画片,那么小班有多少人?分析:小班每个人就会发张画片,那么,小班的个人比大班的个人多发了张画片,总共多发了张,所以小班有人。38.小芬家由小芬和她的父母组成,小芬
31、的父亲比母亲大岁,今年全家年龄的和是岁,年前这一家全家年龄的和是岁。今年三人各是多少岁?分析:一家人的年龄和今年与年前比较增加了(岁),而如果按照三人计算年后应增加(岁),只能是小芬少了岁,即小芬年前出生,今年是岁,今年父亲是(岁),今年母亲是(岁)。39.某小学原来参加室外活动的人数比参加室内活动的人数多人,现在把室内活动的人改为室外活动,这样室外活动的人数正好是室内人数的倍,则参加室内、室外活动的共有多少人?分析:原来室外、室内活动人数相差人,现把室内的人改为室外活动,这样室外活动人数比室内人数多(人),这时室外活动人数正好是室内人数的倍,人相当于现在室内活动人数的(倍),这样可先求出现在
32、室内活动人数为,再求出室内、外人数之和:40.甲、乙两位学生原计划每天自学时间相同。若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学天的时间仅相当于甲自学天的时间。问:甲、乙原定每天自学的时间是多少?分析:改变后,甲每天比乙多自学小时,即分钟。它是乙五天自学的时间,即乙现在每天自学:(分),原来每天自学的时间是:(分)。41.巧克力每盒块,软糖每盒块,要把这两种糖分发给一些小朋友,每种糖每人一块,由于又来了一位小朋友,软糖就要增加一盒,两种糖分发的盒数就一样多,现在又来了一位小朋友,巧克力还要增加一盒,则最后共有多少个小朋友?分析:新来了一位小朋友,就要增加一盒软糖,说明在此之前
33、,软糖应该是刚好分完几整盒,所以原来的小朋友人数是的倍数。增加了第二位小朋友之后,巧克力糖也要再来一盒了,说明原有的小朋友分几整盒巧克力糖之后还剩下一块,也就是说,原有的小朋友人数是9的倍数减。符合这两个条件的最小的数是,而且它刚好满足原有的巧克力比软糖多一盒的条件,所以原有个小朋友,最后有个小朋友。42.少先队员植树,如果每人挖个坑,那么还有个坑无人挖;如果其中人各挖个坑,其余每人挖个坑,那么恰好将坑挖完。问:一共要挖几个坑?分析:我们将“其中人各挖个坑,其余每人挖个坑”转化为“每人都挖个坑,就多挖了个坑”,这样就变成了典型的盈亏问题。盈亏总额为个坑,两次分配数之差为个坑。人数为人,一共要挖
34、个坑。43、欢欢对乐乐说:“我比你大岁,年后,我的年龄是你的年龄的倍。”欢欢现在_岁。 分析:年后欢欢与乐乐的年龄差不变,还是岁,所以年后乐乐的年龄是岁。欢欢现在的年龄是:(岁)。44. 年前爸爸的年龄是小玲的倍,年后爸爸的年龄是小玲的倍。问现在父女俩的年龄各是多少岁?分析:年后爸爸的年龄是小玲的倍,那么两人的年龄差等于小玲当时(年后)的年龄,所以,两人的年龄差等于小玲年前的年龄加岁。年前爸爸的年龄是小玲的倍,所以两人的年龄差等于小玲当时(年前)年龄的倍。由于年龄差是不变的,所以小玲年前的年龄的倍等于,小玲当时(年前)的年龄为:(岁),现在的年龄为:(岁),爸爸现在的年龄为:(岁)。45. 已
35、知祖孙三人,祖父和父亲的年龄差与父亲和孙子的年龄差相同,祖父和孙子年龄之和为岁,明年祖父年龄恰好等于孙子年龄的倍。求祖孙三人各多少岁?分析:“祖父和父亲的年龄差与父亲和孙子的年龄差相同”这一条件较难理解,可作出示意图,从图中容易看出,祖父和孙子年龄之和恰为父亲年龄的倍。父亲的年龄为:(岁),孙子的年龄为:(岁),祖父的年龄为:(岁)。46. 五位老人的年龄互不相同,其中年龄最大的比年龄最小的大岁,已知他们的平均年龄为岁,其中年龄最大的一位老人的年龄是多少岁?分析:如果最小的比只小岁,那么由于这时其他人的年龄均不小于岁,而最大的比大岁,这样平均年龄必超过岁;如果最小的比小岁,那么可能还有一人比小
36、岁,但最大的比大岁,而,从而平均年龄仍超过岁;如果最小的比小岁,那么最大的比大岁,两人的平均年龄正好是岁,其他三人如果年龄是、(或、),那么五人平均年龄正好是岁;如果最小的比小岁或小岁,类似前面的分析可知,这时平均年龄必小于岁。因此 ,最大的年龄一定是岁。47. (年“走进美妙的数学花园”初赛)猴王带领一群猴子去摘桃。下午收工后,猴王开始分配。若大猴分个,小猴分个,猴王可留个。若大、小猴都分个,猴王能留下个。在这群猴子中,大猴(不包括猴王)比小猴多_只。分析:当大猴分个,小猴分个时,猴王可留个。若大、小猴都分个,猴王能留下个。也就是说在大猴分个,小猴分个后,每只大猴都拿出个,分给每只小猴个后,
37、还剩下个,所以大猴比小猴多只48. (年湖北省“创新杯”决赛)四班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果。如果买芒果千克,还差元;如果买奶糖千克,则还剩元。已知每千克芒果比奶糖贵元,那么,辅导员老师带了_元钱。分析:这笔钱买千克芒果还差元,若把这千克芒果换成奶糖就会多出元,所以这笔钱买千克奶糖会多出元。而这笔钱买千克奶糖会多出元,所以每千克奶糖的价格为:(元)。辅导老师共带了元。49. 有一些糖,每人分块则多块,如果现有人数增加到原有人数的倍,那么每人块就少两块,这些糖共有多少块?分析:第一次每人分块,第二次每人分块,可以认为原有的人每人拿出块糖分给新增加的人,而新增加的人刚好是原
38、来的一半,这样新增加的人每人可分到块糖果,这些人每人还差块,一共差了块,所以新增加了人,原有人。糖果数为:(块)。50、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员?共挖了多少树坑?【分析】:解这道题的关键在于条件的转换,把“如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑” 转换成“每人挖6个树坑,还差2(64)个树坑。”则本题成为“一盈一亏”的盈亏问题;对比两个条件,因为每人多挖(65)一个;所以就要多挖32(64)个,这样就可求出人数,继而求出树坑数。在这里我们把两个条件中每人挖的差(65)叫分差,因两个条件中每人挖的数量不同而产生的差叫总差。本题中:总差分差人数;推广可得:两次分配的差叫分差,总差分3种:一盈一亏中:盈亏总差;在双盈或双亏中:大数小数总差;总差分差份数 份数在不同的题目中表示不同的意思。 解:32(64)(65)7(人) 75338(个)-树坑数 答:共挖了38个树坑。51.钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。问小明带了多少钱?【分析】:关键在于条件的转换,要么都转换成钢笔,要么都转换
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 垃圾回收处理合同
- 家庭高层换窗户安全合同
- 劳动合同电子版模板简短
- 房屋借用合同协议书
- 中介的租房合同
- 04年技术开发与许可合同
- 年度网络安全防护合同2024
- 2024年二手房交易双方的责任与义务详细说明合同2篇
- 基于2024年度业绩的股权激励计划合同
- 2024年度雕塑加工技术创新与转让合同3篇
- 2023年国家公务员录用考试《行测》真题(地市级)及答案解析
- 第五单元 平行四边形和梯形 单元测试 (含答案)2024-2025学年四年级上册数学人教版
- 球星C罗培训课件
- 2024-2030年中国蓝宝石衬底行业发展可行性及投资规划分析报告版
- 湖北省鄂东南省级示范高中教育教学改革联盟学校2024-2025学年高一上学期期中联考英语试题 含答案
- 中学阶段预防青少年犯罪实施方案
- 2025届高考英语专项复习 广东省各地名校之A篇阅读理解题集(十篇含解析)
- 综合测试04小说阅读(多文本)-备战2025年高考语文一轮复习考点帮(新高考)(教师版)
- 2024年品牌授权合同:授权乙方使用甲方品牌进行产品生产与销售
- 2024年医院建设泥水工程合同
- 中国农业发展银行招聘考试笔试题库及答案解析
评论
0/150
提交评论