复合材料概念_第1页
复合材料概念_第2页
复合材料概念_第3页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1总论1复合材料概念、命名、分类及其根本性能。概念:复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。命名:将增强材料的名称放在前面,基体材料的名称放在后面,再加上“复合材 料。f连续纤维复合材料按増强材料形态短纤錐复合材料 粒状填料貝合材料I编织复合材料玻謫纤维复合材料碳纤维复合材料按瞄强纤维种类有机纤维复命材料金属纤维复合材料J帥瓷纤维复合材料聚合物基复合材料 按基体材料金属基以合材料无机非金属基复合材料按材料作用J结构刼合材料1功能复合材料根本性能:可综合发挥各种组成材料的优点,使一种材料具有多种性能,具有天 然材料所没有的性能。可按对材料性能的需要进行材料的

2、设计和制备。可制成所 需的任意形状的产品。性能的可设计性是复合材料的最大特点。2聚合物基复合材料的主要性能比强度、比模量大;耐疲劳性能好;减震性好;过载时平安性好;具有多种功能 性;有很好的加工工艺性。3金属基复合材料的主要性能高比强度、高比模量;导热、导电性能好;热膨胀系数小、尺寸稳定性好;良好 的高温性能;耐磨性好;良好的疲劳性能和断裂韧性;不吸潮、不老化、气密性 好。4陶瓷基复合材料的主要性能强度高、硬度大、耐高温、抗氧化,高温下抗磨损性好、耐化学腐蚀性优良,热 膨胀系数和相对密度较小5) 复合材料的三个结构层次一次结构: 由基体和增强材料复合而成的单层材料, 其力学性能决定于组份材料

3、的力学性能、相几何和界面区的性能。二次结构: 单层材料层合而成的层合体, 其力学性能决定于单层材料的力学性能 和铺层几何。三次结构: 工程结构或产品结构, 其力学性能决定于层合体的力学性能和结构几 何。6) 复合材料设计的三个层次单层材料设计: 包括正确选择增强材料、 基体材料及其配比, 该层次决定单层板 的性能。铺层设计:包括对铺层材料的铺层方案做出合理安排, 该层次决定层合板的性能。 结构设计:确定产品结构的形状和尺寸。2 基体材料1) 金属基体材料 选择基体的原那么、金属基结构复合材料的基体、金属基功能复合材料的基体 原那么:金属基复合材料的使用要求; 金属基复合材料组成特点; 集体金属

4、与增强 物的相容性。结构复合材料的基体可大致分为轻金属基体和耐热合金基体两大类。 金属基功能复合材料的基体是纯铝及铝合金、纯铜及铜合金、银、铅、锌等。2) 无机胶凝材料主要包括水泥、 石膏、菱苦土和水玻璃等。 研究和应用最多的是纤维增强水泥基 增强塑料与树脂相比,水泥基体材料的特征特征: 水泥基体为多孔体系,其孔隙尺寸可由十分之几纳米到数十纳米; 纤维与水泥的弹性模量比不大;水泥基材的断裂延伸率较低;水泥基材种含有粉末或颗粒状的物料, 与纤维呈点接触, 故纤维的掺量受到很大 的限制。水泥基材呈碱性,对金属纤维可起保护作用,但对大多数矿物纤维不利。3陶瓷材料常用的陶瓷基体、氧化物陶瓷和非氧化物陶

5、瓷种类 基体:玻璃,玻璃陶瓷,氧化物陶瓷,非氧化物陶瓷。氧化物陶瓷种类:匚I -非氧化物陶瓷种类:不含氧的氮化物、碳化物、硼化物和硅化物3增强材料1玻璃纤维分类玻璃原料成分这种分类方法主要用于连续玻璃纤维,一般以不同的含碱量来区分。无碱玻璃纤维,中碱玻璃纤维,有碱玻璃A玻璃纤维,特种玻璃纤维2玻璃结构两个假说微晶结构假说认为,玻璃是由硅酸块和或二氧化硅的“微晶子组成, 在“微晶 子之间由硅酸块过冷溶液所填充。网络结构假说认为,玻璃是由二氧化硅的四面体、铝氧三面体或硼氧三面体相互 连成不规那么三维网络,网络间的空隙由 Na,K,Ca,Mg等阳离子所填充。二氧化硅 四面体的三维网状结构是决定玻璃性

6、能的根底, 填充的Na,Ca等阳离子称为网络 改性物。3玻璃纤维的化学组成玻璃纤维的化学组成主要是二氧化硅、三氧化二硼、氧化钙、三氧化二铝等。4 玻璃纤维高强的原因及影响因素*微裂纹假说认为,玻璃的理论强度取决于分子或原子间的引力, 其理论强度很高, 可到达 200012000Mpa直径:直径变细,拉伸强度增加。纤维的长度:长度增加,拉伸强度显著下降。化学组成:含碱量越高,强度越低。纤维的老化,纤维的疲劳成型方法与成型条件:玻璃硬化速度越快,纤维强度越高。5影响玻璃纤维化学稳定性的因素有哪些?玻璃纤维的化学成分,纤维外表情况对化学稳定性的影响, 侵蚀介质体积和温度 对玻璃纤维化学稳定性的影响,

7、玻璃纤维纱的规格及性能。6中碱玻璃纤维与无碱玻璃纤维耐酸性那个好,为何?中碱纤维含J:I、“比无碱纤维高二十几倍,受酸作用后,首先从外表上,有较多的金属氧化物侵析出来,但主要是lx 的离析、溶解;另一方面酸与玻璃纤维中硅酸盐作用生成硅酸, 而硅酸迅速聚合并凝成胶体,结果在玻璃 外表上会形成一层极薄的氧化硅保护膜,这层膜使酸的侵析与离子交换过程迅速 缓慢,使强度下降也缓慢。实践证明 门小门有利于这层保护膜的形成,所 以中碱纤维比无碱纤维的耐酸性好。7玻璃纤维织物有哪些种类?玻璃纤维布:平纹布,斜纹布,缎纹布,方格布,单向布,无纺布玻璃纤维毡:短切纤维毡,外表毡,连续纤维毡玻璃纤维带8在制造玻璃纤

8、维原丝的过程中为何要用浸润剂,浸润剂起到什么作用,常用的浸润剂有哪些?1. 原丝中的纤维不散乱而能相互粘附在一起;2. 防止纤维间的磨损;3. 原丝相互间不粘结在一起;4. 便于纺织加工等。石蜡乳剂和聚醋酸乙烯酯。9碳纤维概念、性能特点、制造方法、主要原料及其五个阶段。碳纤维是由有机纤维经固相反响转变而成的纤维状聚合物碳,是一种非金属材料碳纤维性能优异,不仅重量轻,比强度大,模量高,而且耐热性好,化学稳定性 好。其制品具有非常优良的X射线透过性,阻止中子透过性,还可赋予塑料以导 电性和导热性。制造方法:气相法、有机纤维碳化法。原料:人造丝,PAN千维,沥青阶段:拉丝,牵伸,稳定,碳化,石墨化。

9、10纤维的老化、疲劳 关于存放时间对纤维强度的影响, 当纤维存放一段时间后, 会出现强度下降的现 象,称为纤维的老化。关于施加复核时间对纤维强度的影响, 玻璃纤维的疲劳一般是指纤维强度随施加 负荷时间的增加而降低的时间。11晶须为何具有高强度? 主要是由于它的直径非常小, 容纳不下能使晶体削弱的空隙、 位错和不完整的等 缺陷。晶须材料的内部结构完整,使它的强度不受外表完整性的严格限制。 第四章 复合材料的界面1简述复合材料界面的定义、结构、特点、作用以及界面的结合方式。 复合材料的界面是指基体与增强体之间化学成分有显著变化的构成彼此结合的, 能起载荷传递作用的微小区域。界面的结构:由五个亚层组

10、成: 树脂基体基体外表相互渗透区增强剂表 面区增强剂及外力场 特点:界面虽然很小,但是它是有尺寸的,约几个纳米到几个微米,是一个区域 或一个带,或一个层,厚度不均匀。它包含里基体和增强物的局部原始接触面。 基体与增强物相互作用生成的反响产物, 此产物与基体及增强物的接触面等。 在 化学成分上有基体等元素外还有其他杂质, 因此界面上的化学成分和相结构是很 复杂的。作用:界面是复合材料的特征, 可将界面的技能归纳为以下几种效应: 传递效 应阻断效应不连续效应散射和吸收效应诱导效应1、机械结合:基体与增强体材料之间不发生化学反响,借助增强纤维外表凹凸 不平的形态而产生的机械铰合和基体与纤维之间的摩擦

11、阻力形成。2、溶解与浸润结合: 基体润湿增强材料相互之间发生原子扩散和溶解形成结合。 液态或是粘流态基体对增强纤维的侵润, 而产生的作用力, 作用范围只有假设干原 子间距大小。3、反响结合:基体与增强体材料间发生化学反响,在界面上生成化合物,以化 学键连接基体和增强体, 是基体和增强材料结合在一起。 基体与纤维之间形成界 面反响层。4、交换反响结合:基体与增强材料间发生化学反响,生成化合物,且还通过扩 散发生元素交换,形成固溶体而使两者结合。5、混合结合:上述几种形式的混合结合方式。3描述聚合物基复合材料界面的形成过程。简述聚合物基复合材料界面作用机 理。界面的形成可分为两个阶段: 第一阶段是

12、基体与增强纤维的接触与润湿过程。 增 强体对基体分子中不同基团或基体各组分的吸附能力不同; 聚合物的界面结构与 本体不同。这一阶段是界面形成与开展的关键阶段。第二阶段是聚合物的固化阶段。聚合物通过物理或化学过程固化形成固定界面 层。第一阶段与第二阶段往往是连续的,有时是同时进行的。界面作用机理:浸润吸附理论: 浸润是形成复合材料界面的根本条件之一, 浸润不良会在界面 上产生空隙,易因应力集中而开裂,完全浸润那么将提高符合材料的强度化学键理论:该理论认为基体树脂外表的活性官能团与增强体外表的官能团能 其化学反响,在界面形成共价键结合物理吸附理论: 也称机械作用理论: 认为增强纤维与树脂基体之间的

13、结合属于 机械铰合和基于次价键作用的物理吸附过渡层理论:为消除内应力,界面区应存在一个过渡层,起到应力松弛作用拘束层理论:该理论也认为在基体和增强体之间存在一个松弛应力的过渡层, 但是该过渡层并非柔性的变形层扩散层理论:这种物理结合是指复合材料的增强体和基体的原子或分子越过两组成物的边界相互扩散而形成的界面结合减弱界面局部应力作用理论: 认为处于基体与增强体界面间的偶联剂提供了一种 “自愈能力 的化学键, 这种化学键在外载荷作用下处于不断形成和断裂的动态平衡状态静电吸引理论:适宜的偶联剂使复合材料的基体和增强体的外表带有异性电荷,引起相互吸引, 从而形成界面结合力, 静电引力引起的界面强度取决

14、于电荷 密度。4简述金属基复合材料界面的类型、结合形式、影响其界面稳定性的因素以及 界面控制方法。I类界面纤维与基体互不反响亦不溶解是平整的,厚度为分子层的程度, 除原组分外,界面不含其他物质。n类界面纤维与基体不反响,但相互溶解是由原组分构成的犬牙交错的溶 解扩散型界面川类界面纤维与基体相互反响形成界面反映层含有亚微级左 右的界面反响物质界面反响层结合方式: 物理结合:指借助材料外表的粗糙形态而产生的机械绞合, 以及借助 基体收缩盈利包紧纤维时产生的摩擦结合 ? 溶解和浸润结合:纤维与基体的相互 作用力是极短程的, 只有假设干原子间距 ? 反响结合:特征是在纤维与基体之间形 成新的化合物层,

15、即界面反响层影响界面的稳定因素: 包括物理和化学两个方面。 物理方面的不稳定因素主要指 在高温条件下增强纤维与基体间的熔融。 化学方面的不稳定因素主要与复合材料 在加工和使用过程中发生的界面化学作用有关, 包括连续界面反响, 交换式界面 反响和暂稳态界面变化等几种现象。界面控制方法: 增强体外表涂层处理,金属基体合金化,优化制备方法和工艺 参数。5玻璃纤维的外表处理剂种类?用外表处理剂处理玻璃纤维的方法目前主要有 哪三种?试简述之。有机络合物类外表处理剂, 是有机酸与氯化铬的络合物, 该类处理剂在无水条件 下结构式为A。有机铬络合物的品种较多,其中以甲基丙烯酸氯化铬配合物应用 最为广泛,其结构

16、式为 B。前处理法: 用既能满足抽丝和纺织工艺要求, 又能促使纤维和树脂浸润与粘接的 处理剂代替纺织型浸润剂,在玻璃纤维抽丝过程中,涂覆到玻璃纤维上。 后处理法:先除去抽丝过程涂覆在玻璃纤维外表的纺织浸润剂, 纤维经处理剂浸 渍、水洗、烘干,使玻璃纤维外表上覆上一层处理剂。迁移法:将化学处理剂参加到树脂胶粘剂中, 在纤维浸胶过程中, 处理剂与经过 热处理后的纤维接触,当树脂固化后产生偶联作用。7) 对碳纤维进行外表处理的方法有哪些? 氧化法、沉积、电聚合、电沉积、等离子体处理 第五章 聚合物基复合材料1 什么是聚合物?什么是聚合物基复合材料? 聚合物是指那些由众多原子或原子团主要以共价键结合而

17、成的相对分子量在一 万以上的化合物。聚合物基复合材料是以邮寄聚合物为载体,连续纤维为增强材料组合而成的2 聚合物基复合材料中聚合物基体的选择原那么是什么? 良好的综合性能,对增强材料具有较大的粘附力,良好的工艺性,低毒性,低刺 激性,价格合理3 聚合物基复合材料的根本性能有哪些? 较高的比强度和比模量,抗疲劳性能好,减振性能好,高温性能好,平安性好, 可设计性强、成型工艺简单。4 聚合物基复合材料喷射成型对原材料有哪些要求?喷射成型的特点是什么? 在树脂体系的粘度应适中, 容易喷射物化、 脱除气泡和浸润纤维, 以及不带静电 等。可以成型比拟复杂形状的制品, 但其厚度和纤维含量都较难精确控制,

18、树脂含量 一般在 60%以上,孔隙率较高,制品强度较低,施工现场污染和浪费较大。5 聚合物基复合材料成型加工技术有哪些?手糊成型湿法铺层成型, 真空袋压法成型, 压力袋成型, 树脂注射和树脂传递 成型,喷射成型,真空辅助树脂注射成型, 夹层结构成型, 模压成型,注射成型, 挤出成型,纤维缠绕成型,拉挤成型,连续板材成型,层压或卷制成型,热塑性 片状模塑料热冲压成型,离心浇铸成型。6 简述模压成型工艺的具体工艺过程。 将定量的模数量或颗粒状树脂与短纤维的混合物放入敞开的金属对模中, 闭模后 加热使其融化, 并在压力作用下充满模腔, 形成与模腔相同形状的模制物, 再经 加热使树脂进一步发生交联反响

19、而固化, 或者冷却使热塑性树脂固化, 脱模后得 到复合材料制品。7 连续缠绕成型工艺对树脂基体及模芯材料有什么要求?并简述其具体工艺过 程。将纤维或带状织物浸渍树脂后缠绕在芯模上, 或者先将纤维或带状织物缠好后再 浸渍树脂。目前普遍采用前者。缠绕机类似一部机床、纤维通过树脂槽后,用轧 辊除去纤维中多余的树脂。纤维应具有较高的强度和模量, 容易被树脂浸润, 纤维纱的张力均匀和缠绕时不 起毛、不断头。 所使用的芯模应具有足够的强度和刚度, 能够承受成型加工过程 中各种载荷如缠绕张力、固化时的热应力、自重等。第六章 金属基复合材料1 分类按基体:铝基复合材料、镍基复合材料、钛基复合材料 按增强体:颗

20、粒增强复合材料、层状复合材料、纤维增强复合材料 2简述金属基复合材料中纤维状增强体的共性 高强度,高模量,容易制造和价格低廉,化学稳定性好,纤维的尺寸和形状,性 能的再现性与一致性,抗损伤或抗磨损性能3 简述铝基复合材料的制造及二次加工工艺? 纤维排列、复合材料组分的组装压合和零件层压。 二次加工是指对根本的复合材料型件如平板、 梁和管等所进行的加工、 包括成型、 连接机械加工和热处理等工艺过程。第七章 陶瓷基复合材料1 陶瓷基复合材料的增强体也称为增韧体。 从几何尺寸上可分为纤维、 晶须和颗 粒。2 纤维增强陶瓷基复合材料分类及其增韧机理 按纤维排布方式的不同, 可将其分为单向排布长纤维复合

21、材料和多向排布纤维复 合材料。单向:当外加应力进一步提高时, 由于基体与纤维间的界面的离解, 同时又由于 纤维的强度高于计提的强度, 进而使纤维可以从基体中拔出。 当拔出的长度到达 某一临界值时,会使纤维发生断裂。 因此裂纹的扩展必须克服由于纤维的参加而 产生的拔出功和纤维断裂功, 这使得材料的断裂更加困难, 从而起到了增韧的作 用。实际材料断裂过程中, 纤维的断裂并非发生在同一裂纹平面, 这样主裂纹还 将沿纤维断裂位置的不同而发生裂纹转向。这也同样会使裂纹的扩展阻力增加, 从而使韧性进一步提高。多向:机理与单向排布纤维复合材料一样,主要靠纤维的拔出与裂纹转向机制, 使其韧性及强度比基体材料大幅度提高。3 纤维增强陶瓷基复合材料的成型方法 泥浆浇铸法:在陶瓷泥浆中把纤维分散,然后浇铸在石膏模型中。 热压烧结法:将长纤维切短, 然后分散并与基体粉末混合, 再用热压烧结的方法 即可制得高性能的复合材料。浸渍法:首先把纤维编织成所需形状, 然后用陶瓷泥浆浸渍, 枯燥后再进行焙烧。 4 晶粒和晶须增强陶瓷基复合材料的制造工艺流程。*配料:湿法和干法。一般采用湿法,湿法主要采用水作溶剂,但在氮化硅、碳化 硅等非氧化物系的原料混合时, 为防止原料的氧化那么使用有机溶剂。 混合装置一 般采用专用球磨机。成型:金属模成型法和橡皮模成型法,注射成型法,挤压成型法。 烧结:从生胚中除去粘合剂后的陶瓷

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论