人教版七年级数学上2.1整式教学设计(3课时)_第1页
人教版七年级数学上2.1整式教学设计(3课时)_第2页
人教版七年级数学上2.1整式教学设计(3课时)_第3页
人教版七年级数学上2.1整式教学设计(3课时)_第4页
人教版七年级数学上2.1整式教学设计(3课时)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章整式的加减2.1整式第1课时用字母表示数教学目标:1.认识用字母表示数.2.会用含字母的式子表示数量关系.教学重难点:会用字母表示数量关系.教学过程:一、创设问题情境,引入新课1.阅读课本P53,本章引言中的问题:问题1:用s表示路程,v表示速度,t表示行驶时间,这三个量之间存在什么样的关系式?问题2:用S表示圆的面积,C表示圆的周长,r表示圆的半径,用含r的式子表示S和C.问题3:a和b表示两个有理数,用字母表示加法交换律.问题4:全班共有学生x人,其中女生人数占54%,女生人数和男生人数分别是多少?用含x的式子表示.2.合作交流以上问题、思考:(1)字母可以表示什么?(2)用字母表示

2、数的作用.3.总结归纳:用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来.4.课本P54例1、P55例2.(1)学生独立完成.(2)交流,有困难的学生组内讨论帮助.二、反应练习1.课本P56练习第14题.2.能力提升练习.(1)一段水渠的横截面是梯形,上口宽a m,下底宽b m,渠深0.8 m,假设这段水渠长为l m,修这条水渠需要挖土石方.(2)一种袋装瓜子,其质量x(g)与售价c(元)之间有关数据如下表:瓜子质量(x g)售价c(元)1002.4+0.52004.8+0.53007.2+0.54009.6+0.550012+0.5用含字母x的式子表示售价c是.第2

3、课时单项式教学目标:1.理解单项式及单项式系数、次数的概念.2.会准确迅速地确定一个单项式的系数和次数.教学重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.教学难点:单项式概念的建立.教学过程:一、复习引入1.列代数式(1)假设正方体的边长为a,那么正方体的面积是;(2)假设三角形一边长为a,并且这边上的高为h,那么这个三角形的面积为;(3)假设x表示正方体的棱长,那么正方体的体积是;(4)假设m表示一个有理数,那么它的相反数是.2.请学生说出所列代数式的意义.3.请学生观察所列代数式包含哪些运算,有何共同运算特征.二、讲授新课1.单项式:通过特征的描述,

4、引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式.然后教师作补充:单独一个数或一个字母也是单项式,如a,5.2.练习:判断以下各代数式中哪些是单项式?(1) ; (2)abc; (3)b2; (4)-5ab2; (5)y;(6)-xy2; (7)-5.3.单项式的系数和次数:直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两局部组成的.以四个单项式a2h,2r,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别

5、是多少,从而引入单项式次数的概念并板书.4.例题:【例1】判断以下各代数式是否是单项式.如不是,请说明理由;如果是,请指出它的系数和次数.(1)x+1;(2);(3)r2;(4)-a2b.【例2】下面各题的判断是否正确?(1)-7xy2的系数是7;(2)-x2y3与x3没有系数;(3)-ab3c2的次数是0+3+2;(4)-a3的系数是-1;(5)-32x2y3的次数是7;(6)r2h的系数是.通过其中的反例练习及例题,强调应注意以下几点:(1)圆周率是常数.(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等.(3)单项式次数只与字母指数有关.5.课堂练习:课本P57

6、练习第1、2题.三、课时小结1.单项式及单项式的系数、次数.2.根据教学过程反应的信息,对出现的问题有针对性地进行小结.四、课堂作业课本P59习题2.1的第1、2题.第3课时多项式和整式教学目标:1.通过本节课的学习,使学生掌握整式、多项式的项及其次数、常数项的概念.2.初步体会类比和逆向思维的数学思想.教学重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数以及常数项等概念.教学难点:准确指出多项式的次数.教学过程一、复习引入1.列代数式:(1)长方形的长与宽分别为a、b,那么长方形的周长是;(2)某班有男生x人,女生21人,那么这个班共有学生人;(3)图中阴影局部的面积为;

7、(4)鸡兔同笼,鸡a只,兔b只,那么共有头个,脚只.2.观察以上所得出的四个代数式与上节课所学单项式有何区别.(1)2(a+b);(2)21+x;(3)ab-()2; (4)2a+4b.二、讲授新课1.多项式:板书由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.例如,多项3x2-2x+5有三项,它们是3x2,-2x,5,其中5是常数项.一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2-2x+5是一个二次三项式.注意

8、:(1)多项式的次数不是所有项的次数之和.(2)多项式的每一项都包括它前面的符号.2.例题:【例1】判断:多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;多项式3n4-2n2+1的次数为4,常数项为1.【例2】指出以下多项式的项和次数:(1)3x-1+3x2;(2)4x3+2x-2y2.【例3】指出以下多项式是几次几项式.(1)x3-x+1;(2)x3-2x2y2+3y2.【例4】代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的值.注意:多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式.分析例4时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.【例5】一条河流的水流速度为2.5千米/时,如果船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、乙两船在静水中的速度分别是20千米/时和35千米/时,那么它们在这条河流中顺水行驶和逆水行驶的速度各是多少?3.课堂练习:课本P58练习第1、2题.填空:-a2b-ab+1是次项式,其中三次项系数是,二次项为,常数项为,写出所有的项.三、课时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论