小升初奥数专题-第六讲图形面积_第1页
小升初奥数专题-第六讲图形面积_第2页
小升初奥数专题-第六讲图形面积_第3页
小升初奥数专题-第六讲图形面积_第4页
小升初奥数专题-第六讲图形面积_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精编学习资料欢迎下载第六讲图形面积简单的面积计算是小学数学的一项重要内容.要会计算面积,首先要能识别一些特别的图形:正方形、三角形、平行四边形、梯形等等,然后会计算这些图形的面积.如果我们把这些图形画在方格纸上,不但容易识别,而且容易计算上面左图是边长为 4的正方形,它的面积是4 X 4= 16 (格);右图是3 X 5的长方形,它的面积是3 X 5 = 15 (格).7f1/3高*/上面左图是一个锐角三角形,它的底是5,咼是4,面积是5 X 4 2= 10 (格);右图是一个钝角三角形,底是 4,高也是4,它的面积是4 X 4十2= 8 (格).这里特别说明,这两个三角形的高线一样长,钝角三

2、角形的高线有可能在三角形的外面(4+7 )X 4 - 2 = 22 (格).上面面积计算的单位用“格”,一格就是一个小正方形.如果小正方形边长是 1厘米,1格就是1平方厘米;如果小正方形边长是 1米,1格就是1平方米.也就是说我们设定一个方格的边长是1个长度单位,1格就是一个面积单位.在这一讲中,我们直接用数表示长度或面积,省略了相应的长度单位和面积单位6.1 三角形的面积用直线组成的图形,都可以划分成若干个三角形来计算面积.三角形面积的计算公式是:三角形面积=底X高十2.这个公式是许多面积计算的基础 因此我们不仅要掌握这一公式,而且要会灵活运用 例1右图中BD长是4, DC长是2,那么三角形

3、 ABD的面积是三角形 ADC面积的多少倍呢?解:三角形ABD与三角形ADC的高相同.三角形ABD面积=4X高十2.三角形ADC面积=2X高十2.因此三角形ABD的面积是三角形 ADC面积的2倍.注意:三角形的任意一边都可以看作是底,这条边上的高就是三角形的高,所以每个三角形都可看成有三个底,和相应的三条高.例2右图中,BD, DE EC的长分别是2, 4, 2.F是线段AE的中点,三角形 ABC的高为4.求三角形DFE的面积.解:BC= 2 + 4 + 2 = 8.三角形ABC面积=8 X 4 - 2 = 16.我们把A和D连成线段,组成三角形 ADE它与三角形ABC的高相同,而DE长是4,

4、也 是BC的一半,因此三角形 ADE面积是三角形 ABC面积的一半.同样道理,EF是AE的一半, 三角形DFE面积是三角形 ADE面积的一半.这样-来三角形陀的面积是三角形ABC面积時三角形DFE面积=16十4= 4.例3右图中长方形的长是 20,宽是12,求它的内部阴影部分面积BE 一样长.解:ABEF也是一个长方形,它内部的三个三角形阴影部分高都与而三个三角形底边的长加起来,就是FE的长.因此这三个三角形的面积之和是FEX BE- 2,它恰好是长方形ABEF面积的一半.同样道理,FECD也是长方形,它内部三个三角形(阴影部分)面积之和是它的面积的 一半因此所有阴影的面积是长方形 ABCD面

5、积的一半,也就是20 X 12-2 = 120.通过方格纸,我们还可以从另一个途径来求解当我们画出中间两个三角形的高线,把每个三角形分成两个直角三角形后,图中每个直角三角形都是某个长方形的一半,而长方形ABCD是由这若干个长方形拼成因此所有这些直角三角形(阴影部分)的面积之和是长方形 ABCD面积的的一半例4右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少?解:把A和C连成线段,四边形 ABCD就分成了两个,三角形 ABC和三角形ADC.对三角形ABC来说,AB是底边,高是10,因此面积=4X 10- 2= 20.对三角形ADC来说,DC是底边,高

6、是8,因此面积=7X 8- 2= 28.四边形ABCD面积=20 + 28 = 48.这一例题再一次告诉我们,钝角三角形的高线有可能是在三角形的外面例5在边长为6的正方形内有一个三角形 BEF,线段AE= 3, DF= 2,求三角形BEF的面积.解:要直接求出三角形 BEF的面积是困难的,但容易求出下面列的三个直角三角形的面 积三角形 ABE面积=3X 6 X 2= 9.三角形 BCF 面积=6 X( 6-2 )- 2= 12.三角形 DEF 面积=2X( 6-3 )- 2 = 3.我们只要用正方形面积减去这三个直角三角形的面积就能算出:三角形 BEF 面积=6X 6-9-12-3 = 12.

7、例6在右图中,ABCD是长方形,三条线段的长度如图所示,M是线段DE的中点,求四边形ABM(阴影部分)的面积.解:四边形ABMD中,已知的太少,直接求它面积是不可能的,我们设法求出三角形 DCE 与三角形MBE的面积,然后用长方形 ABCD勺面积减去它们,由此就可以求得四边形ABMD的面积.把M与C用线段连起来,将三角形DCE分成两个三角形.三角形DCE的面积是7 X 2十2=7.因为M是线段DE的中点,三角形DMC与三角形MCE面积相等,所以三角形 MCE面积是72 = 3.5.因为BE = 8是CE = 2的4倍,三角形 MBE与三角形 MCE高一样,因此三角形 MBE面积是3.5 X 4

8、= 14.长方形 ABCD面积=7 X( 8+ 2) =70.四边形 ABMD面积=70-7- 14 = 49.6.2 有关正方形的问题先从等腰直角三角形讲起.一个直角三角形,它的两条直角边一样长, 这样的直角三角形,就叫做等腰直角三角形 它有一个直角(90度),还有两个角都是 45度,通常在一副三角尺中.有一个就是等腰直 角三角形.两个一样的等腰直角三角形,可以拼成一个正方形,如图(a).四个一样的等腰直角三角形,也可以拼成一个正方形,如图(b)一个等腰直角三角形,当知道它的直角边长,从图(a)知,它的面积是直角边长的平方十2.当知道它的斜边长,从图(b)知,它的面积是() 斜边的平方十4例

9、7右图由六个等腰直角三角形组成.第一个三角形两条直角边长是8.后一个三角形解:从前面的图形上可以知道,前一个等腰直角三角形的两个拼成的正方形,等于后个等腰直角三角形四个拼成的正方形.因此后一个三角形面积是前一个三角形面积的一半, 第一个等腰直角三角形的面积是8X 8十2= 32.这一个图形的面积是32+ 16 + 8 + 4 + 2 + 1 = 63.例8如右图,两个长方形叠放在一起,小长形的宽是2, A点是大长方形一边的中点,并且三角形ABC是等腰直角三角形,那么图中阴影部分的总面积是多少?解:为了说明的方便,在图上标上英文字母 D , E, F, G.三角形ABC的面积=2X 2 -2=

10、2.三角形ABC ADE EFG都是等腰直角三角形.三角形ABC的斜边,与三角形ADE的直角边一样长,因此三角形ADE面积=ABC面积X 2 =4.三角形EFG的斜边与三角形 ABC的直角边一样长.因此三角形EFG面积=ABC面积十2=1.阴影部分的总面积是 4 + 1 = 5.例9如右图,已知一个四边形 ABCD勺两条边的长度 AD= 7, BC= 3,三个角的度数:角B和D是直角,角A是45 .求这个四边形的面积.解:这个图形可以看作是一个等腰直角三角形ADE切掉一个等腰直角三角形BCE.因为A是45,角D是90,角E是180 -45 -90 = 45 ,所以ADE是等腰直角三角形,BCE

11、也是等腰直角三角形.四边形ABCD的面积,是这两个等腰直角三角形面积之差,即7 X 7 - 2-3 X 3-2 = 20.这是1994小学数学奥林匹克决赛试题 .原来试题图上并没有画出虚线三角形.参赛同学是不大容易想到把图形补全成为等腰直角三角形.因此做对这道题的人数不多但是有一些同学,用直线 AC把图形分成两个直角三角形,并认为这两个直角三角形是一样的,这就大错特错了 这样做,角A是45。,这一条件还用得上吗?图形上线段相等,两个三角形相等,是不能靠眼睛来测定的,必须从几何学上找出根据,小学同学尚未学过几何, 千万不要随便对图形下结论我们应该从题目中已有的条件作为思考的线索有45和直角,你应

12、首先考虑等腰直角三角形现在我们转向正方形的问题例10在右图11 X 15的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)面积是多少?15一三二P1-二三解:长方形的宽,是“一”与“二”两个正方形的边长之和,长方形的长,是“一”、“三”与“二”三个正方形的边长之和长-宽=15-11 = 4是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=11-4 X 2 = 3.中间小正方形面积=3X 3 = 9.如果把这一图形,画在方格纸上,就一目了然了例11从一块正方形土地中,划出一块宽为1米的长方形土地

13、(见图),剩下的长方形土地面积是15.75平方米.求划出的长方形土地的面积.1米解:剩下的长方形土地,我们已知道长-宽=1 (米).还知道它的面积是15.75平方米,那么能否从这一面积求出长与宽之和呢?如果能求出,那么与上面“差”的算式就形成和差问题了我们把长和宽拼在一起,如右图.从这个图形还不能算出长与宽之和,但是再拼上同样的两个正方形,如下图就拼成一个大正方形,这个正方形的边长,恰好是长方形的长与宽之和15.75157515.75115.7S可是这个大正方形的中间还有一个空洞它也是一个正方形,仔细观察一下,就会发现,它的边长,恰好是长方形的长与宽之差,等于1米现在,我们就可以算出大正方形面

14、积:15.75 X 4+1 X 1= 64 (平方米)64是8X 8,大正方形边长是 8米,也就是说长方形的长+宽=8 (米)因此长=(8 + 1)- 2= 4.5(米)宽=8-4.5 = 3.5 (米)那么划出的长方形面积是4.5 X 1 = 4. 5 (平方米)例12如右图.正方形 ABCD与正方形 EFGC并放在一起.已知小正方形 EFGC勺边长是6, 求三角形AEG(阴影部分)的面积.解:四边形AECD是一个梯形.它的下底是AD,上底是EC,高是CD,因此四边形AECD面积=(小正方形边长+大正方形边长)X大正方形边长十2三角形ADG是直角三角形,它的一条直角边长DG=(小正方形边长+

15、大正方形边长),因此三角形ADG面积=(小正方形边长+大正方形边长)X大正方形边长十 2.四边形AECD与三角形ADG面积一样大.四边形AHCD是它们两者共有,因此,三角形AEH与三角形HCG面积相等,都加上三角形 EHG面积后,就有阴影部分面积=三角形ECG面积=小正方形面积的一半=6 X 6-2= 18.十分有趣的是,影阴部分面积,只与小正方形边长有关, 而与大正方形边长却没有关系6.3 其他的面积这一节将着重介绍求面积的常用思路和技巧.有些例题看起来不难,但可以给你启发的内容不少,请读者仔细体会例13画在方格纸上的一个用粗线围成的图形(如右图),求它的面积解:直接计算粗线围成的面积是困难

16、的,我们通过扣除周围正方形和直角三角形来计算周围小正方形有3个,面积为1的三角形有5个,面积为1.5的三角形有1个,因此围 成面积是4X 4-3-5-1.5= 6.5.例6与本题在解题思路上是完全类同的.例14下图中ABCD是 6 X 8的长方形,AF长是4,求阴影部分三角形AEF的面积.3解:三角形AEF中,我们知道一边 AF,但是不知道它的高多长,直接求它的面积是困难的.如果把它扩大到三角形 AEB底边AB就是长方形的长,高是长方形的宽,即BC的长,面积就可以求出三角形AEB的面积是长方形面积的一半,而扩大的三角形AFB是直角三角形,它的两条直角边的长是知道的,很容易算出它的面积因此三角形

17、AEF面积=(三角形 AEB面积)-(三角形AFB面积)=8X 6-2-4 X 8-2=8.这一例题告诉我们,有时我们把难求的图形扩大成易求的图形,当然扩大的部分也要容易求出,从而间接地解决了问题.前面例9的解法,也是这种思路.例15下左图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,那么有草部分的面积(阴影部分)有多大?16161D解:我们首先要弄清楚,平行四边形面积有多大.平行四边形的面积是底X高.从图上可 以看出,底是2,高恰好是长方形的宽度.因此这个平行四边形的面积与 10 X 2的长方形面 积相等.可以设想,把这个平行四边形换成10 X

18、 2的长方形,再把横竖两条都移至边上(如前页右图),草地部分面积(阴影部分)还是与原来一样大小,因此草地面积=(16-2 )X( 10-2 ) = 112.例16右图是两个相同的直角三角形叠在一起,求阴影部分的面积解:实际上,阴影部分是一个梯形,可是它的上底、下底和高都不知道,不能直接来求它的面积.阴影部分与三角形 BCE合在一起,就是原直角三角形 你是否看出,ABCD也是梯形, 它和三角形BCE合在一起,也是原直角三角形.因此,梯形ABCD的面积与阴影部分面积一样 大梯形ABCD勺上底BC,是直角边AD的长减去3,高就是DC的长.因此阴影部分面积等于梯形 ABCD面积=(8+ 8-3 )X

19、5- 2= 32.5.上面两个例子都启发我们,如何把不容易算的面积,换成容易算的面积,数学上这叫等 积变形要想有这种“换”的本领,首先要提高对图形的观察能力例17下图是两个直角三角形叠放在一起形成的图形.已知AF,FE, EC都等于3,CB,BD都等于4.求这个图形的面积.解:两个直角三角形的面积是很容易求出的三角形 ABC面积=(3 + 3+ 3)X 4-2= 18.三角形 CDE面积=(4 + 4)X 3 - 2 = 12.这两个直角三角形有一个重叠部分-四边形BCEG只要减去这个重叠部分,所求图形的面积立即可以得出因为AF = FE = EC= 3,所以AGF, FGE, EGC是三个面

20、积相等的三角形因为CB= BD= 4,所以CGB BGD是两个面积相等的三角形2X三角形DEC面积=2 X 2X(三角形 GBC面积)+ 2X(三角形 GCE面积)三角形ABC面积=(三角形GBC面积)+ 3 X(三角形 GCE面积) 四边形BCEG面积=(三角形GBC面积)+ (三角形 GCE面积)=(2X 12+ 18)- 5=8.4.所求图形面积=12+ 18- 8.4= 21.6.例18如下页左图,ABCG! 4X 7长方形,DEFG是 2 X 10长方形.求三角形 BCM与三角 形DEM面积之差.解:三角形BCM与非阴影部分合起来是梯形ABEF.三角形DEM与非阴影部分合起来是两个长

21、方形的和.(三角形BCM面积)-(三角形DEM面积)=(梯形ABEF面积)-(两个长方形面积之和=(7+ 10)X( 4+ 2) - 2- ( 4X 7 + 2 X 10)=3.10B13, 35, 49.例19上右图中,在长方形内画了一些直线,已知边上有三块面积分别是那么图中阴影部分的面积是多少?解:所求的影阴部分,恰好是三角形ABC与三角形CDE的公共部分,而面积为 13, 49, 35这三块是长方形中没有被三角形ABC与三角形CDE盖住的部分,因此(三角形ABC面积)+ (三角形CDE面积)+ ( 13 + 49+ 35)=(长方形面积)+ (阴影部分面积)三角形ABC底是长方形的长,高

22、是长方形的宽;三角形 CDE底是长方形的宽,高是长方形的长因此,三角形 ABC面积,与三角形 CDE面积,都是长方形面积的一半,就有阴影部分面积=13 + 49 + 35 = 97.6.4 几种常见模型、等积模型ab 等底等高的两个三角形面积相等; 两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比; 如右图S1 :S2 =a:b 夹在一组平行线之间的等积变形,如右图Sxacd二Sbcd ;反之,如果SxACDBCD,则可知直线AB平行于CD . 等底等高的两个平行四边形面积相等(长方形和正方形可以特殊的平行四边形); 三角形面积等于与它等底等高的平行四边形面积的一半; 两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于 它们的高之比.二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在 ABC中,D,E分别是 AB, AC上的点如图 (或D在BA的延长线上,E在AC上),则 Sx abc :Sxade = (AB AC) : (AD AE)D图三、蝶形定理任意四边形中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论