APCalculusABreviewAP微积分复习提纲_第1页
APCalculusABreviewAP微积分复习提纲_第2页
APCalculusABreviewAP微积分复习提纲_第3页
APCalculusABreviewAP微积分复习提纲_第4页
APCalculusABreviewAP微积分复习提纲_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、f(x) =limf(cf(c + + Ax)Ax) - - f(c)f(c)AxAxAP CALCULUS AB REVIEWChapter 2Differe ntiatio nDefinition of Tangent Line with Slop mIf f is defi ned on an ope n in terval containing c, and if the limitAyAyf(cf(c + + AxJAxJ - - f(c)f(c)1*1*II +lim = lim -= mexists, then the line passing through (c, f(c)

2、with slope m is the tangent line to the graph of f at the point (c, f(c)、Defin iti on of the Derivative of a Fun cti on The Derivative of f at x is given byprovided the limit exists 、 For all x for which this limit exists, f is afun cti on of x、*The Cha in Rule? Implicit Differentiation (take the de

3、rivative on both sides; derivative of y is y*y )Chapter 3Applicati ons of Differe ntiatio n*Extrema and the first derivative test (minimum:- 宀 + , maximum: + f - , + & - are the sign of f ) (x)*Defi niti on of a Critical NumberLet f be defined at c、 If f (c) = 0 OR IF F IS NOT DIFFERENTIABLEAT C, th

4、e n c is a critical nu mber of f、*Rolle s TheoremIf f is differe ntiable on the ope n in terval (a, b) and f (a) = f (b), the n there is at least one nu mber c in (a, b) such thaf (c) = 0、*The Mean Value Theorem*The Power Rule *The Product RuleIf f is continuous on the closed interval a, b and diffe

5、rentiable on the狀4 11)l-I+ C, n 工一 1ope n in terval (a, b), the n there exists a nu mber c in (a, b) such that (c)=fW - - /(a)/(a)-、*ln creas ing and decreas ing in terval of fun cti ons (take the first derivative) *Con cavity (on the in terval which f( 0,c on cave up)*Sec ond Derivative TestLet f b

6、e a function such thatf (c) = 0 and the second derivative of f exists on an ope n in terval containing c1. If f(c) 0, then f(c) is a minimum2. If f(c) 0, then f(c) is a maximum*Points of Inflection (take second derivative and set it equal to 0, solve the equati on to get x and plug x value in origi

7、nal fun cti on)*Asymptotes (horiz on tal and vertical)*Limits at Infinity*Curve Sketching (take first and second derivative, make sure all the characteristics of a fun cti on are clear)? Optimization Problems*Newton s Method (used to approximate the zeros of a function, which is tedious and stupid,

8、DO NOT HA VE TO KNOW IF U DO NOT WANT TO SCORE 5)Chapter 4 & 5In tegrati on*Be able to solve a differe ntial equati on*Basic In tegrati on Rules2)1引锂止餐;二一二亡电山匚3)1 n人仁i i :.冷丨匚*ln tegral of a fun cti on is the area un der the curve*Riemann Sum (divide interval into a lot of sub-intervals, calculate t

9、hearea for each sub-i nterval and summati on is the in tegral、*Defi nite in tegral*The Fun dame ntal Theorem of CalculusIf a function f is continuous on the closed interval a, b and F is an an ti-derivative of f on the in terval a, b, the nJy(x)dx = 0Ja)dx = F(h)- F)、*Defi niti on of the Average Val

10、ue of a Fun cti on on an In tervalIf f is in tegrable on the closed in terval a, b, the n the average value of f on the in terval is*The sec ond fun dame ntal theorem of calculusIf f is con ti nu ous on an ope n intern al I containing a, the n, for every x in the in terval,即了 (t)处卜他、*ln tegrati on b

11、y Substituti on*Integration of Even and Odd Functions1) If f is an evenfunction, then 、2) If f is an odd fun cti on, the n*The Trapezoidal RuleLet f be continuous on a, b、 The trapezoidal Rule forMoreover, a n 卩 the right-ha nd side approaches、*Simps on Rule (n is eve n)Let f be con ti nu ous on a,

12、b、Simps on Rule for approximati ngisMoreover, as n, the right-ha nd side approaches*Inverse functions(y= f(x), switch y and x, solve for x)*The Derivative of an In verse Fun cti onLet f be a function that is differentiable on an interval I、 If f has an in verse fun cti on g, the n g is differe ntiab

13、le at any x for which f approximat ingis give n byg(x)和、Moreover,f g(x)和、1gW =*The Derivative of the Natural Exponen tial Fun cti on*ln tegrati on Rules for Exp onen tial Fun cti onsLet u be a differe ntiable fun cti on of x、?Derivatives for Bases other tha neLet a be a positive real nu mber (a 勺)and let u be a differe ntiablefun cti on of x、d r “I“Id d r ri i 1 1 JuJu.-r-a= (In a)a r- -log ul GJ?lim (1 += I im e?*Derivatives of In verse Trigo no metric Fun c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论