几何五大模型之二:鸟头定理模型_第1页
几何五大模型之二:鸟头定理模型_第2页
几何五大模型之二:鸟头定理模型_第3页
几何五大模型之二:鸟头定理模型_第4页
几何五大模型之二:鸟头定理模型_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、几何五大模型之二:鸟头定理(共角定理)模型鸟头宦理(共角定理)模型两个三嬴中有一个角相同或互补,这两个三角形叫做共角三角形。 共角三角形的面和比等于对应角(相同角或互补角)两夹边的乘和之比。如下图在AABC中,D,卫分别是AC 点或D在卫&的延长线 上,E 绘直C 上),则 SABC:Sade=(-AB x AC):(AD X AE)证明:最后我们会发现两种情况的证明方法完全一样.D鸟头定理(共角定理)证明* 连接BE”在AAEB中|SAADE .AD(1)SABEAB在Aabc:中.Saabe ,AESaABCAC将(i) Xw.saADE .AEXAD-i_5iABCAQxAB证毕。如上图

2、,1SAABC中,Ds E分别杲盘F 2上的点苴中:F-C2AE, AD=2DB 3肌=1,求AADE的面和。题_解法利用鸟头定理有:iADEAEADAEAD121気 AB cACxABACAB436所以 SiABE 7题_解法二*本题也可以不用鸟头定理而用等和变换。 连接BE在肛B中,AAED: SaaebAD: AB=2:3Saaed=(2/3)Sziaeb(1)在AABC中,Saaee: SaabcAE:AC-1:4处逝引冏声二磁(2由,(卸式可得S = ;X|XS_ABC=;BABDEB证毕s例题2:如上图,在AABC中,E是AC上的点,D昙EA証长线卜的一羔茸中; EC=2AE, A

3、BWAD, S辭i 求恵DE的面枳通过观察题一的解袪二我们可以找到一个证明如模型图一中鸟头定理的方 法。A连接眈,在AAKB中, Sude .SiABE 在匸中,SihABEAESiAEC ac 将X(2)有:畝nftDE _ AEXADSi ABCACXAB题二解法利用鸟头定理有:SMDESaabcAEXAD AB =X ACXAB AGADAB所以 Saade = 题二解法二暑本题依然可以不用鸟头定理,而用等积变换。连接BE,在ABDE中,Sued; Saaeb=AD; AB=1; 2S“ED=(l)SaAEB在ABC中,Sqaeb: S aabc=AE: AC=1 :3SaAEB=(l(2)由,(2)式可得Sued弓 pxSacW同样的,通过观察题二的解法二我们可以找到一个正明如模型图二中鸟头定 理的方法。D连接BE,在AAEB中,(1)(2)Saade _ APsdABE AB 在AlABC中,SaAB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论