七年级基本平面图形练习题(附答案)17页_第1页
七年级基本平面图形练习题(附答案)17页_第2页
七年级基本平面图形练习题(附答案)17页_第3页
七年级基本平面图形练习题(附答案)17页_第4页
七年级基本平面图形练习题(附答案)17页_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、七年级基本平面图形一选择题(共9小题)1(2005河源)由河源到广州的某一次列车,运行途中停靠的车站依次是:河源惠州东莞广州,那么要为这次列车制作的火车票有()A3种B4种C6种D12种2(2003台州)经过A、B、C三点的任意两点,可以画出的直线数为()A1或2B1或3C2或3D1或2或33(2003黄冈)某公司员工分别住在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人三个区在一条直线上,位置如图所示公司的接送打算在此间只设一个停靠点,要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在()AA区BB区CC区D不确定4(2002太原)已知,P是线段AB上一点,且,则等

2、于()ABCD5如图,在数轴上有A、B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A、E两点表示的数的分别为13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A2B1C0D26在同一面内,不重合的三条直线的公共点数个数可能有()A0个、1个或2个B0个、2个或3个C0个、1个、2个或3个D1个或3个7如图所示,甲、乙、丙、丁、戊五名同学有以下说法:甲说:“直线BC不过点A”;乙说:“点A在直线CD外”;丙说:“D在射线CB的反向延长线上”;丁说:“A,B,C,D两两连接,有5条线段”;戊说:“射线AD与射线CD不相交”其中说明

3、正确的有()A3人B4人C5人D2人8(2012孝感)已知是锐角,与互补,与互余,则的值等于()A45B60C90D1809(2008西宁)如果和互补,且,则下列表示的余角的式子中:90;90;(+);()正确的有()A4个B3个C2个D1个二、解答题23如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满

4、足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QCAM的值是否发生变化?若不变,求其值;若不变,请说明理由24如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t0)秒(1)写出数轴上点B表示的数_,点P表示的数_(用含t的代数式表示);M为AP的中点,N为PB的中点点P在运动的过程

5、中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?25画线段MN=3cm,在线段MN上取一点Q,使MQ=NQ,延长线段MN至点A,使AN=MN;延长线段NM至点B,使BN=3BM,根据所画图形计算:(1)线段BM的长度;(2)线段AN的长度;(3)试说明Q是哪些线段的中点?图中共有多

6、少条线段?它们分别是?26如图(1),已知A、B位于直线MN的两侧,请在直线MN上找一点P,使PA+PB最小,并说明依据如图(2),动点O在直线MN上运动,连接AO,分别画AOM、AON的角平分线OC、OD,请问COD的度数是否发生变化?若不变,求出COD的度数;若变化,说明理由27如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点(1)若点C恰好是AB中点,则DE=_cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(4)知识迁移:如图,已知AOB=120,过角的内部任一点C画射线O

7、C,若OD、OE分别平分AOC和BOC,试说明DOE=60与射线OC的位置无关28如图,OA的方向是北偏东15,OB的方向是北偏西40(1)若AOC=AOB,则OC的方向是_;(2)若B、O、D在同一条直线上,OD的方向是_;(3)若BOD可以看作OB绕点O逆时针旋转180到OD所成的角,作BOD平分线OE,并用方位角表示OE的方向29如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t0)秒(1)写出数轴上点B表示的数_,点P表示的数_(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的

8、速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由一选择题(共9小题)1(2005河源)由河源到广州的某一次列车,运行途中停靠的车站依次是:河源惠州东莞广州,那么要为这次列车制作的火车票有()A3种B4种C6种D12种考点:直线、射线、线段1082614专题:应用题分析:由题意可知:由河源要经过3

9、个地方,所以要制作3种车票;由惠州要经过2个地方,所以要制作2种车票;由东莞要经过1个地方,所要制作1种车票;结合上述结论,通过往返计算出答案解答:解:根据分析,知这次列车制作的火车票的总数=3+2+1=6(种)则往返车票应该是:62=12(种)故选D点评:本题的关键是要找出由一地到另一地的车票的数是多少2(2003台州)经过A、B、C三点的任意两点,可以画出的直线数为()A1或2B1或3C2或3D1或2或3考点:直线、射线、线段1082614分析:本题需先根据直线的概念知,可以确定出直线的条数,即可求出正确的结果解答:解:A、B、C三点的任意两点,可以画出的直线数是:当三点在一条直线上的时候

10、,可以画出一条直线;当三点不在同一条直线上的时候,可以画出三条直线;故选B点评:本题主要考查了直线的概念,在解题时要注意分类讨论的方法计数,做到不遗漏,不重复3(2003黄冈)某公司员工分别住在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人三个区在一条直线上,位置如图所示公司的接送打算在此间只设一个停靠点,要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在()AA区BB区CC区D不确定考点:比较线段的长短1082614分析:根据题意分别计算停靠点分别在各点是员工步行的路程和,选择最小的即可解解答:解:当停靠点在A区时,所有员工步行到停靠点路程和是:15100+1030

11、0=4500m;当停靠点在B区时,所有员工步行到停靠点路程和是:30100+10200=5000m;当停靠点在C区时,所有员工步行到停靠点路程和是:30300+15200=12000m当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区故选A点评:此题考查了比较线段的长短,正确理解题意是解题的关键要能把线段的概念在现实中进行应用4(2002太原)已知,P是线段AB上一点,且,则等于()ABCD考点:比较线段的长短1082614专题:计算题分析:根据题意,先设AP=2x,则有PB=5x,故=可求解答:解:如果设AP=2x,那么PB=5x,AB=AP+PB=7x,=故选A点

12、评:灵活运用线段的和、差、倍、分来转化线段之间的数量关系是解题的关键5如图,在数轴上有A、B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A、E两点表示的数的分别为13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A2B1C0D2考点:数轴;比较线段的长短1082614专题:数形结合分析:根据已知点求AE的中点,AE长为25,其长为12.5,然后根据AB=2BC=3CD=4DE求出A、C、B、D、E五点的坐标,最后根据这五个坐标找出离中点最近的点即可解答:解:根据图示知,AE=25,AE=12.5,AE的中点所表示的数是0.5;

13、AB=2BC=3CD=4DE,AB:BC:CD:DE=12:6:4:3;而12+6+4+3恰好是25,就是A点和E点之间的距离,AB=12,BC=6,CD=4,DE=3,这5个点的坐标分别是13,1,5,9,12,在上面的5个点中,距离0.5最近的整数是1故选B点评:此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点6在同一面内,不重合的三条直线的公共点数个数可能有()A0个、1个或2个B0个、2个或3个C0个、1个、2个或3个D1个或3个考点:直线、射线、线段1082614分析:可先画出三条直线相交,发现:3条直线相交最多有3个交点,

14、最少有1个交点三条直线平行的时候为0个交点,两条直线平行被另一直线所截有2个交点,故0个、1个、2个或3个的情况都有解答:解:3条直线相交最多有3个交点,最少有1个交点三条直线平行的时候为0个交点,两条直线平行被另一直线所截有2个交点,故0个、1个、2个或3个的情况都有,故选答案C点评:此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊项一般猜想的方法7如图所示,甲、乙、丙、丁、戊五名同学有以下说法:甲说:“直线BC不过点A”;乙说:“点A在直线CD外”;丙说:“D在射线CB的反向延长线上”;丁说:“A,B,C,D两两连接,有5条线段”;戊说:“射线AD与射线CD不相交

15、”其中说明正确的有()A3人B4人C5人D2人考点:直线、射线、线段1082614专题:计算题分析:此题考查了线的基本性质、概念,注意区别各概念之间的差异解答:解:甲:“直线BC不过点A”,正确;乙:“点A在直线CD外”,正确;丙:“D在射线CB的反向延长线上”,正确;丁:“A,B,C,D两两连接,有5条线段”;应该有AB,AC,AD,BC,BD,CD六条线段,错误;戊:“射线AD与射线CD不相交”,射线AD与射线CD交于点D,错误故选D点评:掌握好直线、射线、线段各个概念的同时还要注意各个概念之间的区别8(2012孝感)已知是锐角,与互补,与互余,则的值等于()A45B60C90D180考点

16、:余角和补角1082614专题:计算题分析:根据互余两角之和为90,互补两角之和为180,结合题意即可得出答案解答:解:由题意得,+=180,+=90,两式相减可得:=90故选C点评:此题考查了余角和补角的知识,属于基础题,掌握互余两角之和为90,互补两角之和为180,是解答本题的关键9(2008西宁)如果和互补,且,则下列表示的余角的式子中:90;90;(+);()正确的有()A4个B3个C2个D1个考点:余角和补角1082614分析:根据角的性质,互补两角之和为180,互余两角之和为90,可将,中的式子化为含有+的式子,再将+=180代入即可解出此题解答:解:和互补,+=180度因为90+

17、=90,所以正确;又90+=+90=18090=90,也正确;(+)+=180+=90+90,所以错误;()+=(+)=18090=90,所以正确综上可知,均正确故选B点评:本题考查了角之间互补与互余的关系,互补两角之和为180,互余两角之和为90度23如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足

18、MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QCAM的值是否发生变化?若不变,求其值;若不变,请说明理由考点:一元一次方程的应用;比较线段的长短1082614分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过的时间为y,得出PE=

19、10y,QD=5y,进而得出+5y400=y,得出AM=y原题得证解答:解:(1)BC=300,AB=,所以AC=600,C点对应200,A点对应的数为:200600=400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,MR=(10+2),RN=600(5+2)x,MR=4RN,(10+2)=4600(5+2)x,解得:x=60;60秒时恰好满足MR=4RN;(3)设经过的时间为y,则PE=10y,QD=5y,于是PQ点为0(800)+10y5y=800+5y,一半则是,所以AM点为:+5y400=y,又QC=200+5y,所以AM=y=300为定值点评:此题考查了一元一次方程的应用,

20、根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析24如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t0)秒(1)写出数轴上点B表示的数4,点P表示的数66t(用含t的代数式表示);M为AP的中点,N为PB的中点点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P

21、遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的距离1082614专题:动点型分析:(1)设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,再根据数轴上点的运动就可以求出P点的坐标;分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN;(2)先求出P、R从A、B出发相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程解答:解:(1)设B点表示的数为x,由题意

22、,得6x=10,x=4B点表示的数为:4,点P表示的数为:66t; 线段MN的长度不发生变化,都等于5理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B的左侧时:MN=MPNP=APBP=(APBP)=AB=5,综上所述,线段MN的长度不发生变化,其值为5(2)由题意得:P、R的相遇时间为:10(6+)=s,P、Q剩余的路程为:10(1+)=,P、Q相遇的时间为:(6+1)=s,P点走的路程为:6()=点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度)一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程

23、问题中的路程=速度时间的运用25画线段MN=3cm,在线段MN上取一点Q,使MQ=NQ,延长线段MN至点A,使AN=MN;延长线段NM至点B,使BN=3BM,根据所画图形计算:(1)线段BM的长度;(2)线段AN的长度;(3)试说明Q是哪些线段的中点?图中共有多少条线段?它们分别是?考点:两点间的距离;直线、射线、线段1082614专题:计算题分析:先根据题意画出几何图形(1)根据BN=3BM可得到MN=2BM,而MN=3cm,即可得到线段BM的长;(2)根据AN=MN即可得到线段AN的长;(3)由(1)与(2)得到BM=MQ=NQ=NA,即QB=QA,QM=QN,则点Q是线段MN的中点,也是

24、线段AB的中点;图形中共有BM、BQ、BN、BA、MQ、MN、MA、QN、QA、NA10条线段解答:解:如图,(1)MN=3cm,BN=3BM,BM=MN=3=1.5(cm );(2)MN=3cm,AN=MNAN=1.5cm;(3)由图可知,BM=MQ=NQ=NA,QB=QA,QM=QN,点Q既是线段MN的中点,也是线段AB的中点;图中共有10条线段,它们分别是:BM、BQ、BN、BA、MQ、MN、MA、QN、QA、NA点评:本题考查了两点间的距离:两点的连线段的长叫两点间的距离也考查了射线与线段的定义26如图(1),已知A、B位于直线MN的两侧,请在直线MN上找一点P,使PA+PB最小,并说

25、明依据如图(2),动点O在直线MN上运动,连接AO,分别画AOM、AON的角平分线OC、OD,请问COD的度数是否发生变化?若不变,求出COD的度数;若变化,说明理由考点:线段的性质:两点之间线段最短;角平分线的定义1082614专题:动点型分析:(1)显然根据两点之间,线段最短连接两点与直线的交点即为所求作的点(2)根据角平分线的概念以及邻补角的概念即可证明解答:解:(1)如图,连接AB交MN于点P,则P就是所求的点理由:两点之间线段最短,(2)COD的度数不会变化,OC是AOM的平分线,COA=AOM,OD是AON的平分线,AOD=AON,AOM+AON=180,COA+AOD=AOM+A

26、ON=(AOM+AON)=90点评:求两点之间的最短距离时,注意两点之间,线段最短;互为邻补角的两个角的角平分线互相垂直27如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点(1)若点C恰好是AB中点,则DE=6cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(4)知识迁移:如图,已知AOB=120,过角的内部任一点C画射线OC,若OD、OE分别平分AOC和BOC,试说明DOE=60与射线OC的位置无关考点:两点间的距离;角平分线的定义;角的计算1082614专题:动点型;规律型;整

27、体思想分析:(1)由AB=12cm,点D、E分别是AC和BC的中点,即可推出DE=(AC+BC)=AB=6cm,(2)由AC=4cm,AB=12cm,即可推出BC=8cm,然后根据点D、E分别是AC和BC的中点,即可推出AD=DC=2cm,BE=EC=4cm,即可推出DE的长度,(3)设AC=acm,然后通过点D、E分别是AC和BC的中点,即可推出DE=(AC+BC)=AB=cm,即可推出结论,(4)由若OD、OE分别平分AOC和BOC,即可推出DOE=DOC+COE=(AOC+COB)=AOB=60,即可推出DOE的度数与射线OC的位置无关解答:解:(1)AB=12cm,点D、E分别是AC和

28、BC的中点,C点为AB的中点,AC=BC=6cm,CD=CE=3cm,DE=6cm,(2)AB=12cm,AC=4cm,BC=8cm,点D、E分别是AC和BC的中点,CD=2cm,CE=4cm,DE=6cm,(3)设AC=acm,点D、E分别是AC和BC的中点,DE=CD+CE=(AC+BC)=AB=6cm,不论AC取何值(不超过12cm),DE的长不变,(4)OD、OE分别平分AOC和BOC,DOE=DOC+COE=(AOC+COB)=AOB,AOB=120,DOE=60,DOE的度数与射线OC的位置无关点评:本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质

29、定理28如图,OA的方向是北偏东15,OB的方向是北偏西40(1)若AOC=AOB,则OC的方向是北偏东70;(2)若B、O、D在同一条直线上,OD的方向是南偏东40;(3)若BOD可以看作OB绕点O逆时针旋转180到OD所成的角,作BOD平分线OE,并用方位角表示OE的方向考点:方向角;角平分线的定义1082614分析:(1)先根据方向角的定义求出AOB的度数,进而求出NOC的度数即可;(2)根据OB的方向是西偏北50求出DOH的度数,即可求出OD的方向,(3)根据OE是BOD的平分线,可知DOE=90,进而可求出SOE的度数可知OE的方向解答:解:(1)OB的方向是北偏西40,OA的方向是北偏东15,NOB=40,NOA=15,AOB=NOB+NOA=55,AOB=AOC,AOC=55,NOC=NOA+AOC=70,OC的方向是北偏东70;(2)OD是OB的反向延长线,DOS=BON=40,OD的方向是南偏东40;(3)OE是BOD的平分线,DOE=90,D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论