![牛顿二项式定理_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-8/17/5676816b-1564-4369-8f7a-63280dab95f9/5676816b-1564-4369-8f7a-63280dab95f91.gif)
![牛顿二项式定理_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-8/17/5676816b-1564-4369-8f7a-63280dab95f9/5676816b-1564-4369-8f7a-63280dab95f92.gif)
![牛顿二项式定理_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-8/17/5676816b-1564-4369-8f7a-63280dab95f9/5676816b-1564-4369-8f7a-63280dab95f93.gif)
![牛顿二项式定理_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-8/17/5676816b-1564-4369-8f7a-63280dab95f9/5676816b-1564-4369-8f7a-63280dab95f94.gif)
![牛顿二项式定理_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-8/17/5676816b-1564-4369-8f7a-63280dab95f9/5676816b-1564-4369-8f7a-63280dab95f95.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、牛顿二项式定理目录二项式定理 发现历程 应用 1. 排列与组合 2. 二项式定理 3. 系数性质 4. 赋值法二项式的递推 加法定理 数形趣遇 算式到算图二项式定理 发现历程 应用 1. 排列与组合 2. 二项式定理 3. 系数性质 4. 赋值法二项式的递推 加法定理 数形趣遇 算式到算图展开编辑本段二项式定理 binomial theorem 二项式定理,又称牛顿二项式定理,由艾萨克牛顿于1664、1665年间提出。 此定理指出: 其中,二项式系数指. 等号右边的多项式叫做二项展开式。 二项展开式的通项公式为 其i项系数可表示为:见图右,即n取i的组合数目。 因此系数亦可表示为帕斯卡三角形(
2、Pascals Triangle) 二项式定理(Binomial Theorem)是指(a+b)n在n为正整数时的展开式。(a+b)n的系数表为: 1 n=0 1 1 n=1 1 2 1 n=2 1 3 3 1 n=3 1 4 6 4 1 n=4 1 5 10 10 5 1 n=5 1 6 15 20 15 6 1 n=6 (左右两端为1,其他数字等于正上方的两个数字之和) 编辑本段发现历程在我国被称为贾宪三角或杨辉三角,一般认为是北宋数学家贾宪所首创。它记载于杨辉的详解九章算法(1261)之中。在阿拉伯数学家卡西的著作算术之钥(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪
3、的完全相同。在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图。但一般却称之为帕斯卡三角形,因为帕斯卡在1654年也发现了这个结果。无论如何,二项式定理的发现,在我国比在欧洲至少要早300年。 1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了的展开式。 编辑本段应用二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。 排列与组合1、Cn0+Cn1+Cn2CnkCnn=2n 2、Cno-Cn1+Cn2-Cn3+(-1)nCnn=0 证明:由(a+b)n=C(n,0)an+C(n,1)a(n-1)*b+C(n,2)a(n-2)*b2+.+C
4、(n,n)bn 当a=b=1时,代入二项式定理可证明1 但a=-1,b=1时代入二项式定理可证明2 二项式定理二项式定理:叫二项式系数(0rn).通项用Tr+1表示,为展开式的第r+1项,且, 注意项的系数和二项式系数的区别. 系数性质对称性: 增减性和最大值:先增后减 n为偶数时,中间一项的二项式系数最大,为:Tn/21 n为奇数时,中间两项的二项式系数相等且最大,为:T(n+1)/2,T(n+1)/21 赋值法掌握“赋值法”这种利用恒等式解决问题的思想. 证明:n个(a+b)相乘,是从(a+b)中取一个字母a或b的积。所以(a+b)n的展开式中每一项都是)ak*b(n-k)的形式。对于每一
5、个ak*b(n-k),是由k个(a+b)选了a,(a的系数为n个中取k个的组合数(就是那个C右上角一个数,右下角一个数)。(n-k)个(a+b)选了b得到的(b的系数同理)。由此得到二项式定理。 二项式系数之和: 2的n次方 而且展开式中奇数项二项式系数之和等于偶数项二项式系数之和等于2的(n-1)次方 二项式定理的推广: 二项式定理推广到指数为非自然数的情况: 形式为 注意:|x|1 (a+b)n=C(n,0)an+C(n,1)a(n-1)*b+C(n,2)a(n-2)*b2+.+C(n,n)bn 编辑本段二项式的递推 推广公式二项式展开后各项的系数依次为:图推广公式 其中,第1个数=1,从
6、第2个数开始,后面的每一个数都可以用前面的那个数表示为 这就是二项式展开“系数递推”的依据. 二项式系数递推实际上是组合数由到的递推. 编辑本段加法定理来自二项式性质 将杨辉三角形中的每一个数,都用组合符号表示出来, 则得图右的三角形. 自然,“肩挑两数”的性质可写成组合的 加法式. 如 这里,(1)相加两数和是“下标相等,上标差1” 的两数;(2)其和是“下标增1,上标选大”的组合数. 一般地,杨辉三角形中第n+1行任意一数,“肩挑 两数”的结果为组合的加法定理: 有了组合的加法定理,二项式(a+b)展开式的证明就变得非常简便了. 编辑本段数形趣遇 算式到算图二项式定理与杨辉三角形是一对天然
7、的数形趣遇,它把数形结合带进了计算数学. 求二项式展开式系数的问题,实际上是一种组合数的计算问题. 用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”. 【图算】 常数项产生在展开后的第5、6两项. 用“错位加法”很容易“加出”杨辉三角形第8行的第5个数. 简图如下: 1 4 6 4 1 1 5 10 10 5 1 15 20 15 6 1 35 35 21 70 56 图上得到=70,=56. 故求得展开式中常数项为70 256 = 42 【点评】 “式算”与“图算”趣遇,各扬所长,各补所短. 杨辉三角形本来就是二项式展开式的算图. 对杨辉三角形熟悉的考生,比如他熟悉到了它
8、的第6行: 1,6,15,20,15,6,1 那么他可以心算不动笔,对本题做到一望而答. 杨辉三角形在3年内考了5个(相关的)题目,这正是高考改革强调“多想少算”、“逻辑思维与直觉思维并重”的结果. 这5个考题都与二项式展开式的系数相关,说明数形结合思想正在高考命题中进行深层次地渗透. 利用二项式推出牛顿切线法开方 开立方公式: 设A = X3,求X.称为开立方。 开立方有一个标准的公式: X(n+1)=Xn+(A/X2-Xn)1/3 (n,n+1是下角标) 例如,A=5,,即求 5介于1的3次方;至2的3次方;之间(1的3次方=1,2的3次方=8) 初始值X0可以取1.1,1.2,1.3,1
9、.4,1.5,1.6,1.7,1.8,1.9,都可以。例如我们取X0 = 1.9按照公式: 第一步:X1=1.9+(5/1.92;-1.9)1/3=1.7。 即5/1.91.9=1.3850416,1.3850416-1.9=-0.5149584,-0.51495841/3=-0.1716528,1.9+(-0.1716528)=1.7。即取2位数值,,即1.7。 第二步:X2=1.7+(5/1.72;-1.7)1/3=1.71。 即5/1.71.7=1.73010,1.73-1.7=0.03,0.031/3=0.01,1.7+0.01=1.71。取3位数,比前面多取一位数。 第三步:X3=1
10、.71+(5/1.712;-1.71)1/3=1.709. 第四步:X4=1.709+(5/1.7092;-1.709)1/3=1.7099 这种方法可以自动调节,第一步与第三步取值偏大,但是计算出来以后输出值会自动转小;第二步,第四步输入值 偏小,输出值自动转大。即5=1.70993; 当然初始值X0也可以取1.1,1.2,1.3,。1.8,1.9中的任何一个,都是X1 = 1.7 。当然,我们在实际中初始值最好采用中间值,即1.5。 1.5+(5/1.5²-1.5)1/3=1.7。 如果用这个公式开平方,只需将3改成2,2改成1。即 X(n + 1) = Xn + (A / Xn
11、 ? Xn)1 / 2. 例如,A=5: 5介于2的平方至3的平方;之间。我们取初始值2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9都可以,我们最好取 中间值2.5。 第一步:2.5+(5/2.5-2.5)1/2=2.2; 即5/2.5=2,2-2.5=-0.5,-0.51/2=-0.25,2.5+(-0.25)=2.25,取2位数2.2。 第二步:2.2+(5/2.2-2.2)1/2=2.23; 即5/2.2=2.272,2.272-2.2=-0.072,-0.0721/2=-0.036,2.2+0.036=2.23。取3位数。 第三步:2.23+(5/2.23-2.23)1/2=2.236。 即5/2.23=2.242,2.242-2.23=0.012,0.0121/2=0.006,2.23+0.006=2.236. 每一步多取一位数。这个方法又叫反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络客服工作总结及时解答解决用户问题
- 食品行业食品安全培训总结
- AIDS抗病毒治疗课件
- 2025年全球及中国血流动力学监测解决方案行业头部企业市场占有率及排名调研报告
- 2025-2030全球新能源交流继电器行业调研及趋势分析报告
- 2025-2030全球刚性墙庇护所行业调研及趋势分析报告
- 2025年全球及中国游戏视频背景音乐行业头部企业市场占有率及排名调研报告
- 2025-2030全球滑移转向岩石拾取器行业调研及趋势分析报告
- 2025-2030全球甲氧氯普胺片行业调研及趋势分析报告
- 2025年全球及中国工业级硅酸钾行业头部企业市场占有率及排名调研报告
- 充电桩知识培训课件
- 2025年七年级下册道德与法治主要知识点
- 2025年交通运输部长江口航道管理局招聘4人历年高频重点提升(共500题)附带答案详解
- 老年髋部骨折患者围术期下肢深静脉血栓基础预防专家共识(2024版)解读
- 偏瘫足内翻的治疗
- 药企质量主管竞聘
- 信息对抗与认知战研究-洞察分析
- 心脑血管疾病预防课件
- 手术室专科护士工作总结汇报
- 2025届高三听力技巧指导-预读、预测
- 苏州市2025届高三期初阳光调研(零模)政治试卷(含答案)
评论
0/150
提交评论