车辆工程专业毕业论文[精品论文]基于滑模变结构控制的电动汽车稳定性控制系统研究_第1页
车辆工程专业毕业论文[精品论文]基于滑模变结构控制的电动汽车稳定性控制系统研究_第2页
车辆工程专业毕业论文[精品论文]基于滑模变结构控制的电动汽车稳定性控制系统研究_第3页
车辆工程专业毕业论文[精品论文]基于滑模变结构控制的电动汽车稳定性控制系统研究_第4页
车辆工程专业毕业论文[精品论文]基于滑模变结构控制的电动汽车稳定性控制系统研究_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、车辆工程专业毕业论文 精品论文 基于滑模变结构控制的电动汽车稳定性控制系统研究关键词:电动汽车 滑模变结构 直接横摆力矩 操纵稳定性 抖振现象摘要:电动汽车稳定性控制系统是一种汽车主动安全技术,它通过抑制汽车过多转向和严重不足转向趋势,提高汽车的操纵稳定性,减少交通事故。本文对电动汽车转向稳定性控制算法和硬件在环试验台进行了研究。以双后轮独立驱动电动汽车为研究对象。采用直接横摆力矩控制方法(dyc),设计了基于滑模变结构理论的车辆操纵稳定性控制策略,提高电动汽车的操纵稳定性。给出了车辆操纵稳定性控制系统硬件在环试验台的总体结构方案,并在所建立的试验台上进行了稳定性控制系统硬件在环试验。 本文以

2、h.b.pacejka轮胎模型(魔术公式)为基础建立了电动汽车二自由度系统动力学模型与理想的线性二自由度模型。选择质心侧偏角和横摆角速度作为稳定性控制系统的主要控制变量,深入分析了两种控制变量与稳定性的关系。 为改善电动汽车的操纵稳定性,本文采用直接横摆力矩控制提高车辆极限工况下弯道加速(或弯道制动)行驶能力。运用滑模变结构控制理论,采用质心侧偏角和横摆角速度这两个控制变量分别研究了三种具有针对性的控制策略-质心侧偏角滑模变结构控制、横摆角速度滑模变结构控制、质心侧偏角和横摆角速度联合控制。 在matlab/simulink仿真平台上,对具有稳定性控制器和没有稳定性控制器的电动汽车模型进行了仿

3、真研究;对不同工况下电动汽车稳定性控制策略的具体应用、控制参数对控制品质的影响、滑模变结构控制理论中抖振现象的消除等问题进行了研究。仿真结果证明了所设计的电动汽车稳定性控制算法的有效性和鲁棒性。 以dspace为基础,本文开发了电动汽车稳定性控制系统硬件在环试验平台,在该试验平台上对电动汽车稳定性控制系统进行了试验研究。结果表明本文所设计的控制算法具有一定的精度和实用性,为进行实车试验奠定了基础。正文内容 电动汽车稳定性控制系统是一种汽车主动安全技术,它通过抑制汽车过多转向和严重不足转向趋势,提高汽车的操纵稳定性,减少交通事故。本文对电动汽车转向稳定性控制算法和硬件在环试验台进行了研究。以双后

4、轮独立驱动电动汽车为研究对象。采用直接横摆力矩控制方法(dyc),设计了基于滑模变结构理论的车辆操纵稳定性控制策略,提高电动汽车的操纵稳定性。给出了车辆操纵稳定性控制系统硬件在环试验台的总体结构方案,并在所建立的试验台上进行了稳定性控制系统硬件在环试验。 本文以h.b.pacejka轮胎模型(魔术公式)为基础建立了电动汽车二自由度系统动力学模型与理想的线性二自由度模型。选择质心侧偏角和横摆角速度作为稳定性控制系统的主要控制变量,深入分析了两种控制变量与稳定性的关系。 为改善电动汽车的操纵稳定性,本文采用直接横摆力矩控制提高车辆极限工况下弯道加速(或弯道制动)行驶能力。运用滑模变结构控制理论,采

5、用质心侧偏角和横摆角速度这两个控制变量分别研究了三种具有针对性的控制策略-质心侧偏角滑模变结构控制、横摆角速度滑模变结构控制、质心侧偏角和横摆角速度联合控制。 在matlab/simulink仿真平台上,对具有稳定性控制器和没有稳定性控制器的电动汽车模型进行了仿真研究;对不同工况下电动汽车稳定性控制策略的具体应用、控制参数对控制品质的影响、滑模变结构控制理论中抖振现象的消除等问题进行了研究。仿真结果证明了所设计的电动汽车稳定性控制算法的有效性和鲁棒性。 以dspace为基础,本文开发了电动汽车稳定性控制系统硬件在环试验平台,在该试验平台上对电动汽车稳定性控制系统进行了试验研究。结果表明本文所设

6、计的控制算法具有一定的精度和实用性,为进行实车试验奠定了基础。电动汽车稳定性控制系统是一种汽车主动安全技术,它通过抑制汽车过多转向和严重不足转向趋势,提高汽车的操纵稳定性,减少交通事故。本文对电动汽车转向稳定性控制算法和硬件在环试验台进行了研究。以双后轮独立驱动电动汽车为研究对象。采用直接横摆力矩控制方法(dyc),设计了基于滑模变结构理论的车辆操纵稳定性控制策略,提高电动汽车的操纵稳定性。给出了车辆操纵稳定性控制系统硬件在环试验台的总体结构方案,并在所建立的试验台上进行了稳定性控制系统硬件在环试验。 本文以h.b.pacejka轮胎模型(魔术公式)为基础建立了电动汽车二自由度系统动力学模型与

7、理想的线性二自由度模型。选择质心侧偏角和横摆角速度作为稳定性控制系统的主要控制变量,深入分析了两种控制变量与稳定性的关系。 为改善电动汽车的操纵稳定性,本文采用直接横摆力矩控制提高车辆极限工况下弯道加速(或弯道制动)行驶能力。运用滑模变结构控制理论,采用质心侧偏角和横摆角速度这两个控制变量分别研究了三种具有针对性的控制策略-质心侧偏角滑模变结构控制、横摆角速度滑模变结构控制、质心侧偏角和横摆角速度联合控制。 在matlab/simulink仿真平台上,对具有稳定性控制器和没有稳定性控制器的电动汽车模型进行了仿真研究;对不同工况下电动汽车稳定性控制策略的具体应用、控制参数对控制品质的影响、滑模变

8、结构控制理论中抖振现象的消除等问题进行了研究。仿真结果证明了所设计的电动汽车稳定性控制算法的有效性和鲁棒性。 以dspace为基础,本文开发了电动汽车稳定性控制系统硬件在环试验平台,在该试验平台上对电动汽车稳定性控制系统进行了试验研究。结果表明本文所设计的控制算法具有一定的精度和实用性,为进行实车试验奠定了基础。电动汽车稳定性控制系统是一种汽车主动安全技术,它通过抑制汽车过多转向和严重不足转向趋势,提高汽车的操纵稳定性,减少交通事故。本文对电动汽车转向稳定性控制算法和硬件在环试验台进行了研究。以双后轮独立驱动电动汽车为研究对象。采用直接横摆力矩控制方法(dyc),设计了基于滑模变结构理论的车辆

9、操纵稳定性控制策略,提高电动汽车的操纵稳定性。给出了车辆操纵稳定性控制系统硬件在环试验台的总体结构方案,并在所建立的试验台上进行了稳定性控制系统硬件在环试验。 本文以h.b.pacejka轮胎模型(魔术公式)为基础建立了电动汽车二自由度系统动力学模型与理想的线性二自由度模型。选择质心侧偏角和横摆角速度作为稳定性控制系统的主要控制变量,深入分析了两种控制变量与稳定性的关系。 为改善电动汽车的操纵稳定性,本文采用直接横摆力矩控制提高车辆极限工况下弯道加速(或弯道制动)行驶能力。运用滑模变结构控制理论,采用质心侧偏角和横摆角速度这两个控制变量分别研究了三种具有针对性的控制策略-质心侧偏角滑模变结构控

10、制、横摆角速度滑模变结构控制、质心侧偏角和横摆角速度联合控制。 在matlab/simulink仿真平台上,对具有稳定性控制器和没有稳定性控制器的电动汽车模型进行了仿真研究;对不同工况下电动汽车稳定性控制策略的具体应用、控制参数对控制品质的影响、滑模变结构控制理论中抖振现象的消除等问题进行了研究。仿真结果证明了所设计的电动汽车稳定性控制算法的有效性和鲁棒性。 以dspace为基础,本文开发了电动汽车稳定性控制系统硬件在环试验平台,在该试验平台上对电动汽车稳定性控制系统进行了试验研究。结果表明本文所设计的控制算法具有一定的精度和实用性,为进行实车试验奠定了基础。电动汽车稳定性控制系统是一种汽车主

11、动安全技术,它通过抑制汽车过多转向和严重不足转向趋势,提高汽车的操纵稳定性,减少交通事故。本文对电动汽车转向稳定性控制算法和硬件在环试验台进行了研究。以双后轮独立驱动电动汽车为研究对象。采用直接横摆力矩控制方法(dyc),设计了基于滑模变结构理论的车辆操纵稳定性控制策略,提高电动汽车的操纵稳定性。给出了车辆操纵稳定性控制系统硬件在环试验台的总体结构方案,并在所建立的试验台上进行了稳定性控制系统硬件在环试验。 本文以h.b.pacejka轮胎模型(魔术公式)为基础建立了电动汽车二自由度系统动力学模型与理想的线性二自由度模型。选择质心侧偏角和横摆角速度作为稳定性控制系统的主要控制变量,深入分析了两

12、种控制变量与稳定性的关系。 为改善电动汽车的操纵稳定性,本文采用直接横摆力矩控制提高车辆极限工况下弯道加速(或弯道制动)行驶能力。运用滑模变结构控制理论,采用质心侧偏角和横摆角速度这两个控制变量分别研究了三种具有针对性的控制策略-质心侧偏角滑模变结构控制、横摆角速度滑模变结构控制、质心侧偏角和横摆角速度联合控制。 在matlab/simulink仿真平台上,对具有稳定性控制器和没有稳定性控制器的电动汽车模型进行了仿真研究;对不同工况下电动汽车稳定性控制策略的具体应用、控制参数对控制品质的影响、滑模变结构控制理论中抖振现象的消除等问题进行了研究。仿真结果证明了所设计的电动汽车稳定性控制算法的有效

13、性和鲁棒性。 以dspace为基础,本文开发了电动汽车稳定性控制系统硬件在环试验平台,在该试验平台上对电动汽车稳定性控制系统进行了试验研究。结果表明本文所设计的控制算法具有一定的精度和实用性,为进行实车试验奠定了基础。电动汽车稳定性控制系统是一种汽车主动安全技术,它通过抑制汽车过多转向和严重不足转向趋势,提高汽车的操纵稳定性,减少交通事故。本文对电动汽车转向稳定性控制算法和硬件在环试验台进行了研究。以双后轮独立驱动电动汽车为研究对象。采用直接横摆力矩控制方法(dyc),设计了基于滑模变结构理论的车辆操纵稳定性控制策略,提高电动汽车的操纵稳定性。给出了车辆操纵稳定性控制系统硬件在环试验台的总体结

14、构方案,并在所建立的试验台上进行了稳定性控制系统硬件在环试验。 本文以h.b.pacejka轮胎模型(魔术公式)为基础建立了电动汽车二自由度系统动力学模型与理想的线性二自由度模型。选择质心侧偏角和横摆角速度作为稳定性控制系统的主要控制变量,深入分析了两种控制变量与稳定性的关系。 为改善电动汽车的操纵稳定性,本文采用直接横摆力矩控制提高车辆极限工况下弯道加速(或弯道制动)行驶能力。运用滑模变结构控制理论,采用质心侧偏角和横摆角速度这两个控制变量分别研究了三种具有针对性的控制策略-质心侧偏角滑模变结构控制、横摆角速度滑模变结构控制、质心侧偏角和横摆角速度联合控制。 在matlab/simulink

15、仿真平台上,对具有稳定性控制器和没有稳定性控制器的电动汽车模型进行了仿真研究;对不同工况下电动汽车稳定性控制策略的具体应用、控制参数对控制品质的影响、滑模变结构控制理论中抖振现象的消除等问题进行了研究。仿真结果证明了所设计的电动汽车稳定性控制算法的有效性和鲁棒性。 以dspace为基础,本文开发了电动汽车稳定性控制系统硬件在环试验平台,在该试验平台上对电动汽车稳定性控制系统进行了试验研究。结果表明本文所设计的控制算法具有一定的精度和实用性,为进行实车试验奠定了基础。电动汽车稳定性控制系统是一种汽车主动安全技术,它通过抑制汽车过多转向和严重不足转向趋势,提高汽车的操纵稳定性,减少交通事故。本文对

16、电动汽车转向稳定性控制算法和硬件在环试验台进行了研究。以双后轮独立驱动电动汽车为研究对象。采用直接横摆力矩控制方法(dyc),设计了基于滑模变结构理论的车辆操纵稳定性控制策略,提高电动汽车的操纵稳定性。给出了车辆操纵稳定性控制系统硬件在环试验台的总体结构方案,并在所建立的试验台上进行了稳定性控制系统硬件在环试验。 本文以h.b.pacejka轮胎模型(魔术公式)为基础建立了电动汽车二自由度系统动力学模型与理想的线性二自由度模型。选择质心侧偏角和横摆角速度作为稳定性控制系统的主要控制变量,深入分析了两种控制变量与稳定性的关系。 为改善电动汽车的操纵稳定性,本文采用直接横摆力矩控制提高车辆极限工况

17、下弯道加速(或弯道制动)行驶能力。运用滑模变结构控制理论,采用质心侧偏角和横摆角速度这两个控制变量分别研究了三种具有针对性的控制策略-质心侧偏角滑模变结构控制、横摆角速度滑模变结构控制、质心侧偏角和横摆角速度联合控制。 在matlab/simulink仿真平台上,对具有稳定性控制器和没有稳定性控制器的电动汽车模型进行了仿真研究;对不同工况下电动汽车稳定性控制策略的具体应用、控制参数对控制品质的影响、滑模变结构控制理论中抖振现象的消除等问题进行了研究。仿真结果证明了所设计的电动汽车稳定性控制算法的有效性和鲁棒性。 以dspace为基础,本文开发了电动汽车稳定性控制系统硬件在环试验平台,在该试验平

18、台上对电动汽车稳定性控制系统进行了试验研究。结果表明本文所设计的控制算法具有一定的精度和实用性,为进行实车试验奠定了基础。电动汽车稳定性控制系统是一种汽车主动安全技术,它通过抑制汽车过多转向和严重不足转向趋势,提高汽车的操纵稳定性,减少交通事故。本文对电动汽车转向稳定性控制算法和硬件在环试验台进行了研究。以双后轮独立驱动电动汽车为研究对象。采用直接横摆力矩控制方法(dyc),设计了基于滑模变结构理论的车辆操纵稳定性控制策略,提高电动汽车的操纵稳定性。给出了车辆操纵稳定性控制系统硬件在环试验台的总体结构方案,并在所建立的试验台上进行了稳定性控制系统硬件在环试验。 本文以h.b.pacejka轮胎

19、模型(魔术公式)为基础建立了电动汽车二自由度系统动力学模型与理想的线性二自由度模型。选择质心侧偏角和横摆角速度作为稳定性控制系统的主要控制变量,深入分析了两种控制变量与稳定性的关系。 为改善电动汽车的操纵稳定性,本文采用直接横摆力矩控制提高车辆极限工况下弯道加速(或弯道制动)行驶能力。运用滑模变结构控制理论,采用质心侧偏角和横摆角速度这两个控制变量分别研究了三种具有针对性的控制策略-质心侧偏角滑模变结构控制、横摆角速度滑模变结构控制、质心侧偏角和横摆角速度联合控制。 在matlab/simulink仿真平台上,对具有稳定性控制器和没有稳定性控制器的电动汽车模型进行了仿真研究;对不同工况下电动汽

20、车稳定性控制策略的具体应用、控制参数对控制品质的影响、滑模变结构控制理论中抖振现象的消除等问题进行了研究。仿真结果证明了所设计的电动汽车稳定性控制算法的有效性和鲁棒性。 以dspace为基础,本文开发了电动汽车稳定性控制系统硬件在环试验平台,在该试验平台上对电动汽车稳定性控制系统进行了试验研究。结果表明本文所设计的控制算法具有一定的精度和实用性,为进行实车试验奠定了基础。电动汽车稳定性控制系统是一种汽车主动安全技术,它通过抑制汽车过多转向和严重不足转向趋势,提高汽车的操纵稳定性,减少交通事故。本文对电动汽车转向稳定性控制算法和硬件在环试验台进行了研究。以双后轮独立驱动电动汽车为研究对象。采用直

21、接横摆力矩控制方法(dyc),设计了基于滑模变结构理论的车辆操纵稳定性控制策略,提高电动汽车的操纵稳定性。给出了车辆操纵稳定性控制系统硬件在环试验台的总体结构方案,并在所建立的试验台上进行了稳定性控制系统硬件在环试验。 本文以h.b.pacejka轮胎模型(魔术公式)为基础建立了电动汽车二自由度系统动力学模型与理想的线性二自由度模型。选择质心侧偏角和横摆角速度作为稳定性控制系统的主要控制变量,深入分析了两种控制变量与稳定性的关系。 为改善电动汽车的操纵稳定性,本文采用直接横摆力矩控制提高车辆极限工况下弯道加速(或弯道制动)行驶能力。运用滑模变结构控制理论,采用质心侧偏角和横摆角速度这两个控制变

22、量分别研究了三种具有针对性的控制策略-质心侧偏角滑模变结构控制、横摆角速度滑模变结构控制、质心侧偏角和横摆角速度联合控制。 在matlab/simulink仿真平台上,对具有稳定性控制器和没有稳定性控制器的电动汽车模型进行了仿真研究;对不同工况下电动汽车稳定性控制策略的具体应用、控制参数对控制品质的影响、滑模变结构控制理论中抖振现象的消除等问题进行了研究。仿真结果证明了所设计的电动汽车稳定性控制算法的有效性和鲁棒性。 以dspace为基础,本文开发了电动汽车稳定性控制系统硬件在环试验平台,在该试验平台上对电动汽车稳定性控制系统进行了试验研究。结果表明本文所设计的控制算法具有一定的精度和实用性,

23、为进行实车试验奠定了基础。电动汽车稳定性控制系统是一种汽车主动安全技术,它通过抑制汽车过多转向和严重不足转向趋势,提高汽车的操纵稳定性,减少交通事故。本文对电动汽车转向稳定性控制算法和硬件在环试验台进行了研究。以双后轮独立驱动电动汽车为研究对象。采用直接横摆力矩控制方法(dyc),设计了基于滑模变结构理论的车辆操纵稳定性控制策略,提高电动汽车的操纵稳定性。给出了车辆操纵稳定性控制系统硬件在环试验台的总体结构方案,并在所建立的试验台上进行了稳定性控制系统硬件在环试验。 本文以h.b.pacejka轮胎模型(魔术公式)为基础建立了电动汽车二自由度系统动力学模型与理想的线性二自由度模型。选择质心侧偏

24、角和横摆角速度作为稳定性控制系统的主要控制变量,深入分析了两种控制变量与稳定性的关系。 为改善电动汽车的操纵稳定性,本文采用直接横摆力矩控制提高车辆极限工况下弯道加速(或弯道制动)行驶能力。运用滑模变结构控制理论,采用质心侧偏角和横摆角速度这两个控制变量分别研究了三种具有针对性的控制策略-质心侧偏角滑模变结构控制、横摆角速度滑模变结构控制、质心侧偏角和横摆角速度联合控制。 在matlab/simulink仿真平台上,对具有稳定性控制器和没有稳定性控制器的电动汽车模型进行了仿真研究;对不同工况下电动汽车稳定性控制策略的具体应用、控制参数对控制品质的影响、滑模变结构控制理论中抖振现象的消除等问题进

25、行了研究。仿真结果证明了所设计的电动汽车稳定性控制算法的有效性和鲁棒性。 以dspace为基础,本文开发了电动汽车稳定性控制系统硬件在环试验平台,在该试验平台上对电动汽车稳定性控制系统进行了试验研究。结果表明本文所设计的控制算法具有一定的精度和实用性,为进行实车试验奠定了基础。电动汽车稳定性控制系统是一种汽车主动安全技术,它通过抑制汽车过多转向和严重不足转向趋势,提高汽车的操纵稳定性,减少交通事故。本文对电动汽车转向稳定性控制算法和硬件在环试验台进行了研究。以双后轮独立驱动电动汽车为研究对象。采用直接横摆力矩控制方法(dyc),设计了基于滑模变结构理论的车辆操纵稳定性控制策略,提高电动汽车的操纵稳定性。给出了车辆操纵稳定性控制系统硬件在环试验台的总体结构方案,并在所建立的试验台上进行了稳定性控制系统硬件在环试验。 本文以h.b.pacejka轮胎模型(魔术公式)为基础建立了电动汽车二自由度系统动力学模型与理想的线性二自由度模型。选择质心侧偏角和横摆角速度作为稳定性控制系统的主要控制变量,深入分析了两种控制变量与稳定性的关系。 为改善电动汽车的操纵稳定性,本文采用直接横摆力矩控制提高车辆极限工况下弯道加速(或弯道制动)行驶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论