普通高等学校招生全国统一考试数学理试题(福建卷,扫描,含答案)要点_第1页
普通高等学校招生全国统一考试数学理试题(福建卷,扫描,含答案)要点_第2页
普通高等学校招生全国统一考试数学理试题(福建卷,扫描,含答案)要点_第3页
普通高等学校招生全国统一考试数学理试题(福建卷,扫描,含答案)要点_第4页
普通高等学校招生全国统一考试数学理试题(福建卷,扫描,含答案)要点_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2015年普通高等学校招生全国统一考试(福建卷)数 学(理工类)第i卷(选择题共50分)一、选择题:本题共 10小题,每小题5分,共50分,在每小题给出的四个选项中,只有 项是符合题目要求的.ai,i2,i3,i4) ib=11,1】a b1、若集合(i是虚数单位),, ,则a ib等于屋:1,-%2、下列函数为奇函数的是a y =& b y = sinx c y = c0sx d y = ex-e a.b.c.d.3、若双曲线22x ye :二1916的左、右焦点分别为f1,f2,点p在双曲线e上,且pf1 =3,-11 -则pf2等于a.11 b.9c.5d.3收入x (万 元)8.28.

2、610.011.311.9支出y (万元)6.27.58.08.59.85户家庭,得到如下4、为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区 统计数据表:根据上表可得回归直线方程?=&+白,其中g=0.76w=y-bx,据此估计,该社区一户收入为15万元家庭年支出为a.11.4万元 b.11.8万元 c.12.0万元 d.12.2万元x 2y .0,x - y 三 0,5、若变量x, y满足约束条件.x-2y+2-0, z=2x-y的最小值等于53a. 2 b. -2 c. 2 d.26、阅读如图所示的程序框图,运行相应的程序,则输出的结果为a.2b.1c.0 d. 一17、若l

3、,m是两条不同的直线,m垂直于平面 ,则“ l m ”是“ 1 ”的a.充分而不必要条件b.必要而不充分条件c充分必要条件d.既不充分也不必要条件28、若a,b是函数 f(x)=x -px + q(p0,q0)的两个不同的零点,且 a,b,一2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 p + q的值等于a.69、p 是 iabc所在平面内一点,且a.13b.15c.19d.2110、若定义在r上的函数f 满足f(0尸一1 ,其导函数f x 满r f x k 1i两/e则下列结论中一定错误的是111111a. lk/k b. ik/kic. iki/kid.,1f i k-1

4、kk-1第ii卷(非选择题共100分)二、填空题:本大题共 5小题,每小题4分,共20分.把答案填在答题卡的相应位置5x 2211、-1的展开式中,x 的系数等于.(用数字作答)12、若锐角mbc的面积为1073,且ab =5,ac =8,则bc等于13、如图,点a的坐标为(1,0),点c的坐标为(2,4),函数 内随机取一点,则此点取自阴影部分的概率等于f x = x2,若在矩形abcd-x 6,x2,( a 0 且 a*1)的值域是4 -,则实数a的取值范围是15、一个二元码是由 0和1组成的数字串x1x2xn n n,其中xk(k=1,2, ,n)称为第k位码元,二元码是通信中常用的码,

5、但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)x4 二 x5 二 x6 二 x7 = 0,x2 二 x3 二 x6 二 x7 = 0,已知某种二元码x1x2x7的码元满足如下校验方程组:道1巳x3 =0,其中运算定义为:00=0,01=1,10=1,1份1=0其中运算巳定义为:0巳0=0, 0巳1=1,10=1,1巳1=0现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定 k等于三、解答题:大小题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤。16 .(本小题满分13分)某银行规定,一张银行卡若在一天内出

6、现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为x,求x的分布列和数学期望.17 .(本小题满分13分)ab=be=ec=2 g,如图,在几何体 abcde中,四边形 abcd是矩形,ab,平面beg be ec, f分别是线段be, dc的中点.(1)求证:gf/平面ade(2)求平面aef与平面bec所成锐二面角的余弦值.1

7、8 .(本小题满分13分)=1(ab0) m -2已知椭圆e: a b过点(0,寸2),且离心率为e= 2 .(1)求椭圆e的方程;9(-,0)(2)设直线l; x=my-1 (mcr)交椭圆e于a, b两点,判断点 g 4与以线段ab为直径的圆的位置关系,并说明理由19 .(本小题满分13分)已知函数f(x)的图像是由函数g(x) = cosx的图像经如下变换得到:先将 g(x)图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2个单位长度(1)求函数f(x)的解析式,并求其图像的对称轴方程;(2)已知关于x的方程f( x) +g(x) = m在*0.2兀向有两个不

8、同的解a , 31)求实数m的取值范围;2nf2)证明:cos( -x3 )= 5 -120 .(本小题满分14分)已知函数 f(x) =ln(1+x) , g (x) =kx (kc r)证明:当x0时,f( x)0,使得对任意的xc ( 0, t)恒有f(x) g;2确定k的所以可能取值,使得存在t,对任意的xc (0, t),恒有1f(x)- g(x) 0, b 0, c 0,函数 f (x) = i x+a i + i x-b i +c的最小值为 4.(1)求a+b+c的值;121 . 22a +-b +c (2)求49的最小值为.数学试题(理工农医类)参考答案一、选择题:本大题考查基

9、础知识和基本运算,每小题1.c2.d3.b4.b5.a6.c7.b5分,满分50分。8.d9.a10.c4分,满分20分。511.8012. 713. 1214. (1,215.5二、填空题:本大题考查基础知识和基本运算,每小题三、解答题:本大题共 6小题,共80分。解答应写出文字说明、证明过程或演算步骤。16 .本小题主要考查古典概型、相互独立事件的概率、随机变量的分布列、数学期望等基础知识,考查运算求解能力、应用意识,考查必然与或然思想,满分 13分解:(1)设“当天小王的该银行卡被锁定”的事件为a,(2)依题意得,x所有可能的取值是1, 2, 3x /*(12 )=/(* = 3)=箕i

10、 =ft6 s 6b 53所以x的分布列为x12 i3p612所以一口一 凝系/+3父母17 .本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间 想象能力、推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想、化归与转 化思想.满分13分.解法一:(1)如图,取 ae的中点h,连接hg, hd, 又g是be的中点,所以 ghab,且 gh= a ab,所以df= 1cd又f是cd中点,2,由四边形 abcd是矩形得,ab/cd , ab=cd所以 gh/df.且 gh=df从而四边形hgfd是平行四边形,所以 gf/dh,又上加亡产俺ab. gtl f立。

11、七一,所以gf平阳.(2)如图,在平面 beg内,过点 b作bq/ec,因为be ce所以bq be 又因为ab,平面bec,所以ab be, ab bq以b为原点,分别以be,bq,ba的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则 a(0,0,2),b(0,0,0),e(2,0,0),f(2,2,1)因为ab,平面bec所以ba=(0,0,2)为平面bec的法向量,理看.02由i 5?=*卜*工方2所以平面aef与平面bec所成锐二面角的余弦值为 3 .设 n = (x, y,z)为平面 aef的法向量.又 ae =(2,0,2),af=(2,2,-1)从而9 取 z = 2 得

12、n=(2,-1,2).解法二:(1)如图,取ab中点m,连接mg, mf, 又g是be的中点,可知 gm/ae, 又ae,二平面ade,gm0平面 ade, 所以gm/平面ade.在矩形abcd中,由m, f分别是ab, cd的中点得mfad.又ad仁平面ade, mf0平面ade.所以mf/平面ade.又因为 gmcmf=m, gm二平面 gmf.mfc平面 gmf.所以平面gmf平面adf,因为gf匚平面gmf,所以 gf平面ade (2 )同解法一.18 .本小题主要考查椭圆、圆、直线与椭圆的位置关系等基础知识,考查推理论证能力、运 算求解能力,考查数形结合思想、化归与转化思想、函数与方

13、程思想 .满分13分 解法一:(1)由已知得所以椭圆e的方程为22xy.+ 匚=i42(2)设点 a(xiyi),b(x2,y2), ab 中点为 h(x0,y0)? x = my-1ix2 y2得(m2+2)y2-2my-3 = o,?+ = 1由?422myi + y2 = , yiy2 =,所以m +2 m +2从而2yo =m +2所以-29 225 2gh| = (xo + ) +yo = (myo+ ) 44,222,5 ,25+ yo = (m +1)yo + myo+ 一216_ 2|ab|422/22(xi - x2) +(yi - y2) _ (m +1)(% - y2),

14、22,、/22、=(m +1)仇 - yiy2) _2_2 |ab|2 5/ 2|gh| -=-myo+(m故422/、255m2+1)yi 72+=216 2(m2 + 2)223(m2+1) 2517m2+2 八-2+ =2 0m2+216 16(m2 + 2)|gh|网(-9,0)所以 2 ,故g 4在以ab为直径的圆外._(m +1)(yi+y2) -4yiy2解法二:(1)同解法(2)设点 a(xly1),b(x2,y2),,则9 ga=(xi+-,yi),gb=(x2所以2myi+y2=m;1yly2=e,从而,2 .5,.、.= (m+1)y1y2+4m(y1+y2)+2255m

15、216 2(m2 + 2)23(m2 +1) 252 +m2+216217m2 +216(m2 + 2)0所以三;,*;a o. xs,涌不共线,所以jl (;h为银的一9 一(一 ,0)故点g 4 在以ab为直径的圆外.19.本小题主要考查三角函数的图像与性质、三角恒等变换等基础知识,考查运算求解能力、 抽象概括能力、推理论证能力,考查函数与方程思想、分类与整体思想、化归与转化思想、 数形结合思想.满分13分.解法一:(1)将g(x) =c0sx的图像上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y = 2cos x的图像,再将y = 2cos x的图像向右平移2个单位长度后得到p、y

16、= 2cos( x -) 2的图像,故 f(x)= 2sinx从而函数f(x) = 2sin x图像的对称轴方程为 i、f( x) + g(x) = 2sin x + cosx = 5( a sin x + -l cosx)(2)1)、55=/5sin(x +j )(其中 sinj = -j= ,cosj、,52=、5)m sin(x+j )=依题意,55在区间0.2兀内有两个不同的解 a , 3当且仅当m|175,故m的取2)因为a,3是方程,5sin(x+j )=m在0.2兀内的两个不同的解,mmsin(a +j )= - sin(b+j )=:所以也,依当上5hl门*8- m学9) 即“

17、斤1130坪1 i一 9955一 gb =(苞 +:x毛 +下 + 出蛇二(myi + 7)(my:+ga.444422 d 2md-1 =-1.5当牺41 时 a 3.即 or r =0)2八cos( a - b) = - cos2(b +j ) = 2sin (b +j ) -1 =所以 解法二:(1)同解法一.(2)1)同解法一.2)因为a , 3是方程j5sin(x+jm在区间0.2兀内有两个不同的解,sin(a +j所以)=m-5,sin( b +j)=m5因” 1(: / ) l . rt st;当-嘉 cevi nj.pj 即 印.4=37:(3*4 ,哨以j c n-fl !

18、- rirt 5*步)7田8弊+炉)口|武54.)+m,口*0)=干)*泊1 u *帜:j20.本小题主要考查导数及其应用等基础知识,考查推理论证能力、运算求解能力、创新意识, 考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想、数形结合思想 满分14分.l /、/、,/,、 c s c、 f (x) = 1 - 1 = 解法一:令 f(x) = f(x)- x= ln(1 + x) - x,x? 0, ?),则有1+x1+x当x/(0, +8) f(x)0时,f(x)0时,f(x)0g(x)在0+8上单调递增,g(x) g(0) =0故对任意正实数%均满足题意.llflj,令

19、rch。.照,! -io.1 a1r -11 对 ff:尊 jt 5 q. 7.有(7 l 工)0 . 附从:nm幻注 电/)拯调递塔.所以说公峨。)=0,即人外以(、 磔匕节mi时.总色】 双 使得灯江总工厂旧,:j. air/3i*m当心】时.他“)却.i-rrvifc fa. m5).洪4,故对才,沙力, |/(t)-fl(i) i-x( *)-/(*) -ln( 1),4 h(,八依ft. *).嘱4 w 1 4 】r 2tfo- 2h*4 i川 fl m * i j - jt*7- j.r = - b _ _ -.】“xl i故斗八.j-d-2/+kj7),九ah*)i4/就-在4一

20、,、* j *上l/上卓添#增,植i“上蝌三必mt所以涡串建造的存九.当上=ba=lt*?”“心, w*i*i唳/q -gx a-ij hf a(tx)ta (.)也| 0 -3*弋虫凶”心)小诫递婚故、u)a0)-o,如*)-*)xlid小与-*). 4,乃,*uj中的短小者为、,划 x6j(版潸足sft您的,不在住.吗,=1 *,曲(i)知.当20 时./t*) -f (*) - a-l&( 1*j).令! i )-1( i+*-/* x c (ot +) k划。/r(o* 心-工”寸广 l*r i+l所以*q)粕0. t由上单两通成.故hlqmna 0.故冲 com. n/t i/o|o

21、此时.任小if宴救,期若把题双)策法:乂 1)a ii m司案法、(时,由( 1 知.对 j vrfa (.0, +*) t故 fl )( ak - *-i ) .(jt-l jx/,朝得 0“4 l孰当心】时,对手工oj i) .忸仃/工)片3 ml 放满足题窟的r不疗住当m1时,取*尸机力叫i,由u )知* 存存*.mj,使得 tk.xkx() t此时 i/(x) -/ a j |-八-g ) xjt.令?事理0仃/故海足胞总的,不存在.“gi 而,而(i j 划* x0 , 1/( i) -x( i) b/l *( i ) t-ln( l+i), 今 w( r) * i- |n( 1 *r) - v * s 0 jh 1 ,期仃 m.u) i p- 2*i h .t 4 i当go %.所以微 m。.上单混递m,a .(i)u 时,怛/(jt)-g(x) vfo3- 0. 3 “ ji 1mn)1.心l&力山2asi ”中的较小者为.端阚肖/0.工1 j时*朝&*) ) x散濯足霞您的1不在很节 ei 困 r 由 u)忆1hm 啊* /

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论