版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、(2013年上海市春季高考数学试卷).已知椭圆的两个焦点分别为、,短轴的两个端点分别为(1)若为等边三角形,求椭圆的方程;(2)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.(2013年高考四川卷(理)已知椭圆:的两个焦点分别为,且椭圆经过点.()求椭圆的离心率;()设过点的直线与椭圆交于、两点,点是线段上的点,且,求点的轨迹方程.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案)椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1.()求椭圆的方程; ()点是椭圆上除长轴端点外的任一点,连接,设的角平分线交 的长轴于点,求的取值范围;()
2、在()的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,若,试证明为定值,并求出这个定值. (2013年普通高等学校招生统一考试浙江数学(理)试题(纯word版)如图,点是椭圆的一个顶点,的长轴是圆的直径.是过点且互相垂直的两条直线,其中交圆于两点,交椭圆于另一点(1)求椭圆的方程; (2)求面积取最大值时直线的方程.xoybl1l2pda(第21题图)(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案)如题(21)图,椭圆的中心为原点,长轴在轴上,离心率,过左焦点作轴的垂线交椭圆于两点,.(1)求该椭圆的标准方程;(2)取垂直于轴的直线与椭圆相交于不
3、同的两点,过作圆心为的圆,使椭圆上的其余点均在圆外.若,求圆的标准方程.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯word版)设椭圆的焦点在轴上()若椭圆的焦距为1,求椭圆的方程;()设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.解: (2013年高考新课标1(理)已知圆:,圆:,动圆与外切并且与圆内切,圆心的轨迹为曲线 c.()求c的方程;()是与圆,圆都相切的一条直线,与曲线c交于a,b两点,当圆p的半径最长时,求|ab|. 由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3. 设动圆的圆心为(
4、,),半径为r. (2013年普通高等学校招生统一考试天津数学(理)试题(含答案)设椭圆的左焦点为f, 离心率为, 过点f且与x轴垂直的直线被椭圆截得的线段长为. () 求椭圆的方程; () 设a, b分别为椭圆的左右顶点, 过点f且斜率为k的直线与椭圆交于c, d两点. 若, 求k的值. (2013年高考江西卷(理)如图,椭圆经过点离心率,直线的方程为.(1)求椭圆的方程;(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得?若存在求的值;若不存在,说明理由.(2013年普通高等学校招生统一考试新课标卷数学(理)(纯word版含答案)平面直角坐标
5、系中,过椭圆的右焦点作直交于两点,为的中点,且的斜率为.()求的方程;()为上的两点,若四边形的对角线,求四边形面积的最大值.(2013年上海市春季高考数学试卷).已知椭圆的两个焦点分别为、,短轴的两个端点分别为(1)若为等边三角形,求椭圆的方程;(2)若椭圆的短轴长为,过点的直线与椭圆相交于两点,且,求直线的方程.解(1)设椭圆的方程为. 根据题意知, 解得, 故椭圆的方程为. (2)容易求得椭圆的方程为. 当直线的斜率不存在时,其方程为,不符合题意; 当直线的斜率存在时,设直线的方程为. 由 得. 设,则 因为,所以,即 , 解得,即. 故直线的方程为或. (2013年高考四川卷(理)已知
6、椭圆:的两个焦点分别为,且椭圆经过点.()求椭圆的离心率;()设过点的直线与椭圆交于、两点,点是线段上的点,且,求点的轨迹方程.解: 所以,. 又由已知, 所以椭圆c的离心率 由知椭圆c的方程为. 设点q的坐标为(x,y). (1)当直线与轴垂直时,直线与椭圆交于两点,此时点坐标为 (2) 当直线与轴不垂直时,设直线的方程为. 因为在直线上,可设点的坐标分别为,则 . 又 由,得 ,即 将代入中,得 由得. 由可知 代入中并化简,得 因为点在直线上,所以,代入中并化简,得. 由及,可知,即. 又满足,故. 由题意,在椭圆内部,所以, 又由有 且,则. 所以点的轨迹方程是,其中, (2013年普
7、通高等学校招生统一考试山东数学(理)试题(含答案)椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1.()求椭圆的方程; ()点是椭圆上除长轴端点外的任一点,连接,设的角平分线交 的长轴于点,求的取值范围;()在()的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,若,试证明为定值,并求出这个定值. 解:()由于,将代入椭圆方程得 由题意知,即 又 所以, 所以椭圆方程为 ()由题意可知:=,=,设其中,将向量坐标代入并化简得:m(,因为, 所以,而,所以 (3)由题意可知,l为椭圆的在p点处的切线,由导数法可求得,切线方程为: ,所以,而
8、,代入中得 为定值. (2013年普通高等学校招生统一考试浙江数学(理)试题(纯word版)如图,点是椭圆的一个顶点,的长轴是圆的直径.是过点且互相垂直的两条直线,其中交圆于两点,交椭圆于另一点(1)求椭圆的方程; (2)求面积取最大值时直线的方程.xoybl1l2pda(第21题图)解:()由已知得到,且,所以椭圆的方程是; ()因为直线,且都过点,所以设直线,直线,所以圆心到直线的距离为,所以直线被圆所截的弦; 由,所以 ,所以 , 当时等号成立,此时直线 (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案)如题(21)图,椭圆的中心为原点,长轴在轴上,离心率,过左焦点作轴的垂
9、线交椭圆于两点,.(1)求该椭圆的标准方程;(2)取垂直于轴的直线与椭圆相交于不同的两点,过作圆心为的圆,使椭圆上的其余点均在圆外.若,求圆的标准方程. (2013年普通高等学校招生统一考试安徽数学(理)试题(纯word版)设椭圆的焦点在轴上()若椭圆的焦距为1,求椭圆的方程;()设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.解: (). () . 由. 所以动点p过定直线. (2013年高考新课标1(理)已知圆:,圆:,动圆与外切并且与圆内切,圆心的轨迹为曲线 c.()求c的方程;()是与圆,圆都相切的一条直线,与曲线c交于a,b两点
10、,当圆p的半径最长时,求|ab|. 由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3. 设动圆的圆心为(,),半径为r. ()圆与圆外切且与圆内切,|pm|+|pn|=4, 由椭圆的定义可知,曲线c是以m,n为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为. ()对于曲线c上任意一点(,),由于|pm|-|pn|=2,r2, 当且仅当圆p的圆心为(2,0)时,r=2. 当圆p的半径最长时,其方程为, 当的倾斜角为时,则与轴重合,可得|ab|=. 当的倾斜角不为时,由r知不平行轴,设与轴的交点为q,则=,可求得q(-4,0),设:,由于圆m相切得,解得.
11、 当=时,将代入并整理得,解得=,|ab|=. 当=-时,由图形的对称性可知|ab|=, 综上,|ab|=或|ab|=. (2013年普通高等学校招生统一考试天津数学(理)试题(含答案)设椭圆的左焦点为f, 离心率为, 过点f且与x轴垂直的直线被椭圆截得的线段长为. () 求椭圆的方程; () 设a, b分别为椭圆的左右顶点, 过点f且斜率为k的直线与椭圆交于c, d两点. 若, 求k的值. (2013年高考江西卷(理)如图,椭圆经过点离心率,直线的方程为.(1)求椭圆的方程;(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得?若存在求的值;若不存在,说明理由.解:(1)由在椭圆上得, 依题设知,则 代入解得. 故椭圆的方程为. (2)方法一:由题意可设的斜率为, 则直线的方程为 代入椭圆方程并整理,得, 设,则有 在方程中令得,的坐标为. 从而. 注意到共线,则有,即有. 所以 代入得, 又,所以.故存在常数符合题意. 方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厂房装饰装修合同范本
- 医院和药店合作协议书范本
- 商协会公司劳务合同
- 二零二四年度企业品牌形象设计服务协议
- 固定资产折旧合同
- 二零二四年度煤矿企业保洁保安服务合同
- 二零二四年建筑设计与工程咨询合同
- 专业老鼠防治合同
- 施工合同权益规定
- 二零二四年度停车场车牌识别系统合同:某智能科技公司与停车场的车牌识别系统协议
- 消防中控室值班记录表(标准通用版)
- 五年级英语上册素材-Module 1课文翻译 外研版(一起点)
- 统编版小学语文一年级上册《比尾巴》预学单
- 富士施乐复印机扫描到PC设置方法
- 中小学幼儿园数字化教学资源进校园管理办法
- 高效课堂做好笔记 课件-学习习惯的培养主题班会
- control-m作业调度系统操作手册说明书
- 三年级美术上册 《梦幻中的城堡》教育教学课件
- 消化内镜清洗消毒技术操作流程图(最新)
- 煤矿运输“四超”物件安全技术措施
- 人卫版外科学小肠疾病第一、二、三节课件
评论
0/150
提交评论