版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数中考试题及答案(2013 德州)如图,在直角坐标系中有一直角三角形aob,o为坐标原点,oa=1,tanbao=3,将此三角形绕原点o逆时针旋转90,得到doc,抛物线y=ax2+bx+c经过点a、b、c(1)求抛物线的解析式;(2)若点p是第二象限内抛物线上的动点,其坐标为t,设抛物线对称轴l与x轴交于一点e,连接pe,交cd于f,求出当cef与cod相似点p的坐标;是否存在一点p,使pcd得面积最大?若存在,求出pcd的面积的最大值;若不存在,请说明理由考点:二次函数综合题分析:(1)先求出a、b、c的坐标,再运用待定系数法就可以直接求出二次函数的解析式;(2)由(1)的解析式可以
2、求出抛物线的对称轴,分类讨论当cef=90时,当cfe=90时,根据相似三角形的性质就可以求出p点的坐标;先运用待定系数法求出直线cd的解析式,设pm与cd的交点为n,根据cd的解析式表示出点n的坐标,再根据spcd=spcn+spdn就可以表示出三角形pcd的面积,运用顶点式就可以求出结论解答:解:(1)在rtaob中,oa=1,tanbao=3,ob=3oa=3doc是由aob绕点o逆时针旋转90而得到的,docaob,oc=ob=3,od=oa=1,a、b、c的坐标分别为(1,0),(0,3)(3,0)代入解析式为,解得:抛物线的解析式为y=x22x+3;(2)抛物线的解析式为y=x22
3、x+3,对称轴l=1,e点的坐标为(1,0)如图,当cef=90时,cefcod此时点p在对称轴上,即点p为抛物线的顶点,p(1,4);当cfe=90时,cfecod,过点p作pmx轴于点m,则efcemp,mp=3emp的横坐标为t,p(t,t22t+3)p在二象限,pm=t22t+3,em=1t,t22t+3=3(1t),解得:t1=2,t2=3(与c重合,舍去),t=2时,y=(2)22(2)+3=3p(2,3)当cef与cod相似时,p点的坐标为:(1,4)或(2,3);设直线cd的解析式为y=kx+b,由题意,得,解得:,直线cd的解析式为:y=x+1设pm与cd的交点为n,则点n的
4、坐标为(t, t+1),nm=t+1pn=pmnm=t22t+3(t+1)=t2+2spcd=spcn+spdn,spcd=pmcm+pnom=pn(cm+om)=pnoc=3(t2+2)=(t+)2+,当t=时,spcd的最大值为点评:本题考查了相似三角形的判定及性质的运用,待定系数法求函数的解析式的运用,三角形的面积公式的运用,二次函数的顶点式的运用,解答本题时,先求出二次函数的解析式是关键,用函数关系式表示出pcd的面积由顶点式求最大值是难点(2013衡阳)如图,已知抛物线经过a(1,0),b(0,3)两点,对称轴是x=1(1)求抛物线对应的函数关系式;(2)动点q从点o出发,以每秒1个
5、单位长度的速度在线段oa上运动,同时动点m从m从o点出发以每秒3个单位长度的速度在线段ob上运动,过点q作x轴的垂线交线段ab于点n,交抛物线于点p,设运动的时间为t秒当t为何值时,四边形ompq为矩形;aon能否为等腰三角形?若能,求出t的值;若不能,请说明理由考点:二次函数综合题分析:(1)利用顶点式、待定系数法求出抛物线的解析式;(2)当四边形ompq为矩形时,满足条件om=pq,据此列一元二次方程求解;aon为等腰三角形时,可能存在三种情形,需要分类讨论,逐一计算解答:解:(1)根据题意,设抛物线的解析式为:y=a(x+1)2+k,点a(1,0),b(0,3)在抛物线上,解得:a=1,
6、k=4,抛物线的解析式为:y=(x+1)2+4(2)四边形ompq为矩形,om=pq,即3t=(t+1)2+4,整理得:t2+5t3=0,解得t=,由于t=0,故舍去,当t=秒时,四边形ompq为矩形;rtaob中,oa=1,ob=3,tana=3若aon为等腰三角形,有三种情况:(i)若on=an,如答图1所示:过点n作ndoa于点d,则d为oa中点,od=oa=,t=;(ii)若on=oa,如答图2所示:过点n作ndoa于点d,设ad=x,则nd=adtana=3x,od=oaad=1x,在rtnod中,由勾股定理得:od2+nd2=on2,即(1x)2+(3x)2=12,解得x1=,x2
7、=0(舍去),x=,od=1x=,t=;(iii)若oa=an,如答图3所示:过点n作ndoa于点d,设ad=x,则nd=adtana=3x,在rtand中,由勾股定理得:nd2+ad2=an2,即(x)2+(3x)2=12,解得x1=,x2=(舍去),od=1x=1,t=1综上所述,当t为秒、秒,(1)秒时,aon为等腰三角形点评:本题考查了二次函数的图象与性质、待定系数法、解一元二次方程、勾股定理、解直角三角形、矩形性质、等腰三角形的性质等知识点,综合性比较强,有一定的难度第(2)问为运动型与存在型的综合性问题,注意要弄清动点的运动过程,进行分类讨论计算(2013,娄底)如图,在中,高,矩
8、形的一边在边上,、分别在、上,交于点.(1)求证:;(2)设,当为何值时,矩形的面积最大?并求出最大面积;(3)当矩形的面积最大时,该矩形以每秒1个单位的速度沿射线匀速向上运动(当矩形的边到达点时停止运动),设运动时间为秒,矩形与重叠部分的面积为,求与的函数关系式,并写出的取值范围.(2013湘西州)如图,已知抛物线y=x2+bx+4与x轴相交于a、b两点,与y轴相交于点c,若已知a点的坐标为a(2,0)(1)求抛物线的解析式及它的对称轴方程;(2)求点c的坐标,连接ac、bc并求线段bc所在直线的解析式;(3)试判断aoc与cob是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点q,使
9、acq为等腰三角形?若不存在,求出符合条件的q点坐标;若不存在,请说明理由考点:二次函数综合题分析:(1)利用待定系数法求出抛物线解析式,利用配方法或利用公式x=求出对称轴方程;(2)在抛物线解析式中,令x=0,可求出点c坐标;令y=0,可求出点b坐标再利用待定系数法求出直线bd的解析式;(3)根据,aoc=boc=90,可以判定aoccob;(4)本问为存在型问题若acq为等腰三角形,则有三种可能的情形,需要分类讨论,逐一计算,避免漏解解答:解:(1)抛物线y=x2+bx+4的图象经过点a(2,0),(2)2+b(2)+4=0,解得:b=,抛物线解析式为 y=x2+x+4,又y=x2+x+4
10、=(x3)2+,对称轴方程为:x=3(2)在y=x2+x+4中,令x=0,得y=4,c(0,4);令y=0,即x2+x+4=0,整理得x26x16=0,解得:x=8或x=2,a(2,0),b(8,0)设直线bc的解析式为y=kx+b,把b(8,0),c(0,4)的坐标分别代入解析式,得:,解得k=,b=4,直线bc的解析式为:y=x+4(3)可判定aoccob成立理由如下:在aoc与cob中,oa=2,oc=4,ob=8,又aoc=boc=90,aoccob(4)抛物线的对称轴方程为:x=3,可设点q(3,t),则可求得:ac=,aq=,cq=i)当aq=cq时,有=,25+t2=t28t+1
11、6+9,解得t=0,q1(3,0);ii)当ac=aq时,有=,t2=5,此方程无实数根,此时acq不能构成等腰三角形;iii)当ac=cq时,有=,整理得:t28t+5=0,解得:t=4,点q坐标为:q2(3,4+),q3(3,4)综上所述,存在点q,使acq为等腰三角形,点q的坐标为:q1(3,0),q2(3,4+),q3(3,4)点评:本题考查了二次函数与一次函数的图象与性质、待定系数法、相似三角形的判定、勾股定理、等腰三角形的判定等知识点难点在于第(4)问,符合条件的等腰三角形acq可能有多种情形,需要分类讨论(2013益阳)抛物线y=2(x3)2+1的顶点坐标是()a(3,1)b(3
12、,1)c(3,1)d(3,1)考点:二次函数的性质分析:根据顶点式解析式写出顶点坐标即可解答:解:抛物线y=2(x3)2+1的顶点坐标是(3,1)故选a点评:本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键(2013益阳)阅读材料:如图1,在平面直角坐标系中,a、b两点的坐标分别为a(x1,y1),b(x2,y2),ab中点p的坐标为(xp,yp)由xpx1=x2xp,得xp=,同理,所以ab的中点坐标为由勾股定理得ab2=,所以a、b两点间的距离公式为注:上述公式对a、b在平面直角坐标系中其它位置也成立解答下列问题:如图2,直线l:y=2x+2与抛物线y=2x2交于a、b两点,p为
13、ab的中点,过p作x轴的垂线交抛物线于点c(1)求a、b两点的坐标及c点的坐标;(2)连结ab、ac,求证abc为直角三角形;(3)将直线l平移到c点时得到直线l,求两直线l与l的距离考点:二次函数综合题分析:(1)根据y=2x+2与抛物线y=2x2交于a、b两点,直接联立求出交点坐标,进而得出c点坐标即可;(2)利用两点间距离公式得出ab的长,进而得出pc=pa=pb,求出pac+pcb=90,即acb=90即可得出答案;(3)点c作cgab于g,过点a作ahpc于h,利用a,c点坐标得出h点坐标,进而得出cg=ah,求出即可解答:(1)解:由,解得:,则a,b两点的坐标分别为:a(,3),
14、b(,3+),p是a,b的中点,由中点坐标公式得p点坐标为(,3),又pcx轴交抛物线于c点,将x=代入y=2x2中得y=,c点坐标为(,)(2)证明:由两点间距离公式得:ab=5,pc=|3|=,pc=pa=pb,pac=pca,pbc=pcb,pac+pcb=90,即acb=90,abc为直角三角形(3)解:过点c作cgab于g,过点a作ahpc于h,则h点的坐标为(,3),spac=apcg=pcah,cg=ah=|=又直线l与l之间的距离等于点c到l的距离cg,直线l与l之间的距离为点评:此题主要考查了二次函数的综合应用以及两点之间距离公式和两函数交点坐标求法等知识,根据数形结合得出h
15、点坐标是解题关键(2013,永州)如图,已知二次函数的图象与轴交于a、b两点.(1)写出a、b两点的坐标(坐标用表示)(2)若二次函数图象的顶点p在以ab为直径的圆上,求二次函数的解析式(3)设以ab为直径的m与轴交于c、d两点,求cd的长.(2013株洲)二次函数y=2x2+mx+8的图象如图所示,则m的值是()a8b8c8d6考点:抛物线与x轴的交点3718684分析:根据抛物线与x轴只有一个交点,=0,列式求出m的值,再根据对称轴在y轴的左边求出m的取值范围,从而得解解答:解:由图可知,抛物线与x轴只有一个交点,所以,=m2428=0,解得m=8,对称轴为直线x=0,m0,m的值为8故选
16、b点评:本题考查了二次函数图象与x轴的交点问题,本题易错点在于要根据对称轴确定出m是正数(2013株洲)已知抛物线c1的顶点为p(1,0),且过点(0,)将抛物线c1向下平移h个单位(h0)得到抛物线c2一条平行于x轴的直线与两条抛物线交于a、b、c、d四点(如图),且点a、c关于y轴对称,直线ab与x轴的距离是m2(m0)来(1)求抛物线c1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线c1的对称轴与直线ab交于点e,与抛物线c2交于点f求证:tanedftanecp=考点:二次函数综合题专题:代数几何综合题分析:(1)设抛物线c1的顶点式形式y=a(x1)2,(a0),然后
17、把点(0,)代入求出a的值,再化为一般形式即可;(2)先根据m的值求出直线ab与x轴的距离,从而得到点b、c的纵坐标,然后利用抛物线解析式求出点c的横坐标,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相同求出点a的坐标,然后根据平移的性质设出抛物线c2的解析式,再把点a的坐标代入求出h的值即可;(3)先把直线ab与x轴的距离是m2代入抛物线c1的解析式求出c的坐标,从而求出ce,再表示出点a的坐标,根据抛物线的对称性表示出ed,根据平移的性质设出抛物线c2的解析式,把点a的坐标代入求出h的值,然后表示出ef,最后根据锐角的正切值等于对边比邻边列式整理即可得证解答:(1)解:设抛物线c1的顶
18、点式形式y=a(x1)2,(a0),抛物线过点(0,),a(01)2=,解得a=,抛物线c1的解析式为y=(x1)2,一般形式为y=x2x+;(2)解:当m=2时,m2=4,bcx轴,点b、c的纵坐标为4,(x1)2=4,解得x1=5,x2=3,点b(3,4),c(5,4),点a、c关于y轴对称,点a的坐标为(5,4),设抛物线c2的解析式为y=(x1)2h,则(51)2h=4,解得h=5;(3)证明:直线ab与x轴的距离是m2,点b、c的纵坐标为m2,(x1)2=m2,解得x1=1+2m,x2=12m,点c的坐标为(1+2m,m2),又抛物线c1的对称轴为直线x=1,ce=1+2m1=2m,
19、点a、c关于y轴对称,点a的坐标为(12m,m2),ae=ed=1(12m)=2+2m,设抛物线c2的解析式为y=(x1)2h,则(12m1)2h=m2,解得h=2m+1,ef=h+m2=m2+2m+1,tanedftanecp=,tanedftanecp=点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,二次函数图象与结合变换,关于y轴对称的点的坐标特征,抛物线上点的坐标特征,锐角的正切的定义,(3)用m表示出相应的线段是解题的关键,也是本题的难点(2013巴中)已知二次函数y=ax2+bx+c(a0)的图象如图所示,则下列结论中正确的是()aac0b当x1时,y随x的增大
20、而减小cb2a=0dx=3是关于x的方程ax2+bx+c=0(a0)的一个根考点:二次函数图象与系数的关系;二次函数的性质分析:由函数图象可得抛物线开口向上,得到a大于0,又抛物线与y轴的交点在y轴负半轴,得到c小于0,进而得到a与c异号,根据两数相乘积为负得到ac小于0,选项a错误;由抛物线开口向上,对称轴为直线x=1,得到对称轴右边y随x的增大而增大,选项b错误;由抛物线的对称轴为x=1,利用对称轴公式得到2a+b=0,选项c错误;由抛物线与x轴的交点为(1,0)及对称轴为x=1,利用对称性得到抛物线与x轴另一个交点为(3,0),进而得到方程ax2+bx+c=0的有一个根为3,选项d正确解
21、答:解:由二次函数y=ax2+bx+c的图象可得:抛物线开口向上,即a0,抛物线与y轴的交点在y轴负半轴,即c0,ac0,选项a错误;由函数图象可得:当x1时,y随x的增大而减小;当x1时,y随x的增大而增大,选项b错误;对称轴为直线x=1,=1,即2a+b=0,选项c错误;由图象可得抛物线与x轴的一个交点为(1,0),又对称轴为直线x=1,抛物线与x轴的另一个交点为(3,0),则x=3是方程ax2+bx+c=0的一个根,选项d正确故选d点评:此题考查了二次函数图象与系数的关系,以及抛物线与x轴的交点,难度适中二次函数y=ax2+bx+c=0(a0),a的符合由抛物线的开口方向决定,c的符合由
22、抛物线与y轴交点的位置确定,b的符号由a及对称轴的位置决定,抛物线的增减性由对称轴决定,当抛物线开口向上时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大;当抛物线开口向下时,对称轴左边y随x的增大而增大,对称轴右边y随x的增大而减小此外抛物线解析式中y=0得到一元二次方程的解即为抛物线与x轴交点的横坐标(2013巴中)如图,在平面直角坐标系中,坐标原点为o,a点坐标为(4,0),b点坐标为(1,0),以ab的中点p为圆心,ab为直径作p的正半轴交于点c(1)求经过a、b、c三点的抛物线所对应的函数解析式;(2)设m为(1)中抛物线的顶点,求直线mc对应的函数解析式;(3)试说明直
23、线mc与p的位置关系,并证明你的结论考点:二次函数综合题;解二元一次方程组;待定系数法求一次函数解析式;二次函数的最值;待定系数法求二次函数解析式;勾股定理;勾股定理的逆定理;切线的判定专题:计算题分析:(1)求出半径,根据勾股定理求出c的坐标,设经过a、b、c三点抛物线解析式是y=a(x4)(x+1),把c(0,2)代入求出a即可;(2)求出m的坐标,设直线mc对应函数表达式是y=kx+b,把c(0,2),m(,)代入得到方程组,求出方程组的解即可;(3)根据点的坐标和勾股定理分别求出pc、dc、pd的平方,根据勾股定理的逆定理得出pcd=90,即可求出答案解答:解:(1)a(4,0),b(
24、1,0),ab=5,半径是pc=pb=pa=,op=1=,在cpo中,由勾股定理得:oc=2,c(0,2),设经过a、b、c三点抛物线解析式是y=a(x4)(x+1),把c(0,2)代入得:2=a(04)(0+1),a=,y=(x4)(x+1)=x2+x+2,答:经过a、b、c三点抛物线解析式是y=x2+x+2(2)y=x2+x+2=+,m(,),设直线mc对应函数表达式是y=kx+b,把c(0,2),m(,)代入得:,解得:k=,b=2,y=x+2,y=x+2答:直线mc对应函数表达式是y=x+2(3)mc与p的位置关系是相切证明:设直线mc交x轴于d,当y=0时,0=x+2,x=,od=,
25、d(,0),在cod中,由勾股定理得:cd2=22+=,pc2=,pd2=,cd2+pc2=pd2,pcd=90,pcdc,pc为半径,mc与p的位置关系是相切本题主要考查对用待定系数法求一次函数、二次函数的解析式,勾股定理及勾股定理的逆定理,解二元一次方程组,二次函数的最值,切线的判定等知识点的连接和掌握,能综合运用这些性质进行推理和计算是解此题的关键(2013郴州)如图,abc中,ab=bc,ac=8,tana=k,p为ac边上一动点,设pc=x,作peab交bc于e,pfbc交ab于f(1)证明:pce是等腰三角形;(2)em、fn、bh分别是pec、afp、abc的高,用含x和k的代数
26、式表示em、fn,并探究em、fn、bh之间的数量关系;(3)当k=4时,求四边形pebf的面积s与x的函数关系式x为何值时,s有最大值?并求出s的最大值考点:等腰三角形的判定与性质;二次函数的最值;解直角三角形3718684分析:(1)根据等边对等角可得a=c,然后根据两直线平行,同位角相等求出cpe=a,从而得到cpe=c,即可得证;(2)根据等腰三角形三线合一的性质求出cm=cp,然后求出em,同理求出fn、bh的长,再根据结果整理可得em+fn=bh;(3)分别求出em、fn、bh,然后根据spce,sapf,sabc,再根据s=sabcspcesapf,整理即可得到s与x的关系式,然
27、后利用二次函数的最值问题解答解答:(1)证明:ab=bc,a=c,peab,cpe=a,cpe=c,pce是等腰三角形;(2)解:pce是等腰三角形,emcp,cm=cp=,tanc=tana=k,em=cmtanc=k=,同理:fn=antana=k=4k,由于bh=ahtana=8k=4k,而em+fn=+4k=4k,em+fn=bh;(3)解:当k=4时,em=2x,fn=162x,bh=16,所以,spce=x2x=x2,sapf=(8x)(162x)=(8x)2,sabc=816=64,s=sabcspcesapf,=64x2(8x)2,=2x2+16x,配方得,s=2(x4)2+3
28、2,所以,当x=4时,s有最大值32点评:本题考查了等腰三角形的判定与性质,平行线的性质,锐角三角函数,二次函数的最值问题,表示出各三角形的高线是解题的关键,也是本题的难点(2013,成都)平面直角坐标系中,直线(为常数)与抛物线交于,两点,且点在轴左侧,点的坐标为,连接.有以下说法:;当时,的值随的增大而增大;当时,;面积的最小值为.其中正确的是_.(写出所有正确说法的序号)(2013,成都)在平面直角坐标系中,已知抛物线(为常数)的顶点为,等腰直角三角形的定点的坐标为,的坐标为,直角顶点在第四象限.(1)如图,若该抛物线过 ,两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点
29、在直线上滑动,且与交于另一点.i)若点在直线下方,且为平移前(1)中的抛物线上的点,当以三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点的坐标;ii)取的中点,连接.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.(1) (2)m的坐标是(1-,-2)、(1+,-2)、(4,-1)、(2,-3)、(-2,-7)(3)的最大值是(2013达州)二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是( )答案:b解析:由二次函数图象,知a0,c0,0,所以,b0,所以,反比例函数图象在一、三象限,排除c、d,直线ycxa中,因为a0,所以,选b。
30、(2013达州)如图,在直角体系中,直线ab交x轴于点a(5,0),交y轴于点b,ao是m的直径,其半圆交ab于点c,且ac=3。取bo的中点d,连接cd、md和oc。(1)求证:cd是m的切线;(2)二次函数的图象经过点d、m、a,其对称轴上有一动点p,连接pd、pm,求pdm的周长最小时点p的坐标;(3)在(2)的条件下,当pdm的周长最小时,抛物线上是否存在点q,使?若存在,求出点q的坐标;若不存在,请说明理由。解析:(1)证明:连结cm.oa 为m直径,oca=90.ocb=90.d为ob中点,dc=do.dco=doc.(1分)mo=mc,mco=moc.(2分)dcm=dco+mc
31、o=doc+moc=dom=90.(3分)又点c在m上, dc是m的切线.(4分)(2)解:在rtaco中,有oc=.又a点坐标(5,0), ac=3,oc=4.tanoac=.解得 ob=.又d为ob中点,od=. d点坐标为(0,).(5分)连接ad,设直线ad的解析式为y=kx+b,则有j解得直线ad为y=-x+.二次函数的图象过m(,0)、a(5,0),抛物线对称轴x=.(6分)点m、a关于直线x=对称,设直线ad与直线x=交于点p,pd+pm为最小.又dm为定长,满足条件的点p为直线ad与直线x=的交点.(7分)当x=时,y=-+=.故p点的坐标为(,).(8分)(3)解:存在.sp
32、dm=sdam-spam=amyd-amyp=am(yd-yp).sqam=am,由(2)知d(0,),p(,),(-)=yq 解得yq=(9分)二次函数的图像过m(0,)、a(5,0),设二次函数解析式为y=a(x-)(x-5).又该图象过点d(0,),a(-)(-5)=,a=.y=(x-)(x-5).(10分)又c点在抛物线上,且yq=,(x-)(x-5)=.解之,得x1=,x2=,x3=.点q的坐标为(,),或(,),或(,-).(12分)(2013德州)下列函数中,当x0时,随的增大而增大的是 a b cd x1y133o(2013德州)函数与的图象如图所示,有以下结论:;当时,;其中
33、正确的个数是:( )a1 b2 第11题图c3 d4 (2013德州)如图,在直角坐标系中有一直角三角形aob,o为坐标原点, oa=1,tanbao=3,将此三角形绕原点o逆时针旋转90,得到doc抛物线经过点a、b、c (1)求抛物线的解析式(2)若点p是第二象限内抛物线上的动点,其横坐标为t设抛物线对称轴与x轴交于一点e,连接pe,交cd于f,求出当cef与cod相似时点p的坐标是否存在一点p,使pcd的面积最大?若存在,求出pcd面积的最大值;若不存在,请说明理由第24题图xycodabe第24题备用图xycodab(2013广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴
34、是直线x=1下列结论:abco,2a+b=o,b24aco,4a+2b+co其中正确的是()ab只有cd考点:二次函数图象与系数的关系分析:由抛物线开口向下,得到a小于0,再由对称轴在y轴右侧,得到a与b异号,可得出b大于0,又抛物线与y轴交于正半轴,得到c大于0,可得出abc小于0,选项错误;由抛物线与x轴有2个交点,得到根的判别式b24ac大于0,选项错误;由x=2时对应的函数值小于0,将x=2代入抛物线解析式可得出4a2b+c小于0,最后由对称轴为直线x=1,利用对称轴公式得到b=2a,得到选项正确,即可得到正确结论的序号解答:解:抛物线的开口向上,a0,0,b0,抛物线与y轴交于正半轴
35、,c0,abc0,错误;对称轴为直线x=1,=1,即2a+b=0,正确,抛物线与x轴有2个交点,b24ac0,错误;对称轴为直线x=1,x=2与x=0时的函数值相等,而x=0时对应的函数值为正数,4a+2b+c0,正确;则其中正确的有故选c点评:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b24ac的符号,此外还要注意x=1,1,2及2对应函数值的正负来判断其式子的正确与否(2013广安)如图,在平面直角坐标系xoy中,抛物线y=
36、ax2+bx+c经过a、b、c三点,已知点a(3,0),b(0,3),c(1,0)(1)求此抛物线的解析式(2)点p是直线ab上方的抛物线上一动点,(不与点a、b重合),过点p作x轴的垂线,垂足为f,交直线ab于点e,作pdab于点d动点p在什么位置时,pde的周长最大,求出此时p点的坐标;连接pa,以ap为边作图示一侧的正方形apmn,随着点p的运动,正方形的大小、位置也随之改变当顶点m或n恰好落在抛物线对称轴上时,求出对应的p点的坐标(结果保留根号)考点:二次函数综合题专题:代数几何综合题分析:(1)把点a、b、c的坐标代入抛物线解析式,利用待定系数法求二次函数解析式解答即可;(2)根据点
37、a、b的坐标求出oa=ob,从而得到aob是等腰直角三角形,根据等腰直角三角形的性质可得bao=45,然后求出ped是等腰直角三角形,根据等腰直角三角形的性质,pd越大,pde的周长最大,再判断出当与直线ab平行的直线与抛物线只有一个交点时,pd最大,再求出直线ab的解析式为y=x+3,设与ab平行的直线解析式为y=x+m,与抛物线解析式联立消掉y,得到关于x的一元二次方程,利用根的判别式=0列式求出m的值,再求出x、y的值,从而得到点p的坐标;先确定出抛物线的对称轴,然后(i)分点m在对称轴上时,过点p作pq对称轴于q,根据同角的余角相等求出apf=qpm,再利用“角角边”证明apf和mpq
38、全等,根据全等三角形对应边相等可得pf=pq,设点p的横坐标为n,表示出pq的长,即pf,然后代入抛物线解析式计算即可得解;(ii)点n在对称轴上时,同理求出apf和anq全等,根据全等三角形对应边相等可得pf=aq,根据点a的坐标求出点p的纵坐标,再代入抛物线解析式求出横坐标,即可得到点p的坐标解答:解:(1)抛物线y=ax2+bx+c经过点a(3,0),b(0,3),c(1,0),解得,所以,抛物线的解析式为y=x22x+3;(2)a(3,0),b(0,3),oa=ob=3,aob是等腰直角三角形,bao=45,pfx轴,aef=9045=45,又pdab,pde是等腰直角三角形,pd越大
39、,pde的周长越大,易得直线ab的解析式为y=x+3,设与ab平行的直线解析式为y=x+m,联立,消掉y得,x2+3x+m3=0,当=3241(m3)=0,即m=时,直线与抛物线只有一个交点,pd最长,此时x=,y=+=,点p(,)时,pde的周长最大;抛物线y=x22x+3的对称轴为直线x=1,(i)如图1,点m在对称轴上时,过点p作pq对称轴于q,在正方形apmn中,ap=pm,apm=90,apf+fpm=90,qpm+fpm=90,apf=qpm,在apf和mpq中,apfmpq(aas),pf=pq,设点p的横坐标为n(n0),则pq=1n,即pf=1n,点p的坐标为(n,1n),点
40、p在抛物线y=x22x+3上,n22n+3=1n,整理得,n2+n4=0,解得n1=(舍去),n2=,1n=1=,所以,点p的坐标为(,);(ii)如图2,点n在对称轴上时,设抛物线对称轴与x轴交于点q,paf+fpa=90,paf+qan=90,fpa=qan,又pfa=aqn=90,pa=an,apfnaq,pf=aq,设点p坐标为p(x,x22x+3),则有x22x+3=1(3)=2,解得x=1(不合题意,舍去)或x=1,此时点p坐标为(1,2)综上所述,当顶点m恰好落在抛物线对称轴上时,点p坐标为(,),当顶点n恰好落在抛物线对称轴上时,点p的坐标为(1,2)点评:本题是二次函数综合题
41、型,主要考查了待定系数法求二次函数解析式,等腰直角三角形的判定与性质,正方形的性质,全等三角形的判定与性质,抛物线上点的坐标特征,(2)确定出pde是等腰直角三角形,从而判断出点p为平行于ab的直线与抛物线只有一个交点时的位置是解题的关键,(3)根据全等三角形的性质用点p的横坐标表示出纵坐标或用纵坐标求出横坐标是解题的关键(2013凉山州)先阅读以下材料,然后解答问题:材料:将二次函数y=x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变)解:在抛物线y=x2+2x+3图象上任取两点a(0,3)、b(1,4),由题意知:点a向左平移1个单
42、位得到a(1,3),再向下平移2个单位得到a(1,1);点b向左平移1个单位得到b(0,4),再向下平移2个单位得到b(0,2)设平移后的抛物线的解析式为y=x2+bx+c则点a(1,1),b(0,2)在抛物线上可得:,解得:所以平移后的抛物线的解析式为:y=x2+2根据以上信息解答下列问题:将直线y=2x3向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式考点:二次函数图象与几何变换;一次函数图象与几何变换专题:阅读型分析:根据上面例题可在直线y=2x3上任取两点a(0,3),由题意算出a向右平移3个单位,再向上平移1个单位得到a点坐标,再设平移后的解析式为y=2x+b,再把a点坐
43、标代入解析式即可解答:解:在直线y=2x3上任取两点a(0,3),由题意知a向右平移3个单位,再向上平移1个单位得到a(3,2),设平移后的解析式为y=2x+b,则a(3,2)在y=2x+b的解析式上,2=23+b,解得:b=8,所以平移后的直线的解析式为y=2x8点评:此题主要考查了一次函数图象的几何变换,关键是掌握一次函数图象平移后k值不变(2013凉山州)如图,抛物线y=ax22ax+c(a0)交x轴于a、b两点,a点坐标为(3,0),与y轴交于点c(0,4),以oc、oa为边作矩形oadc交抛物线于点g(1)求抛物线的解析式;(2)抛物线的对称轴l在边oa(不包括o、a两点)上平行移动
44、,分别交x轴于点e,交cd于点f,交ac于点m,交抛物线于点p,若点m的横坐标为m,请用含m的代数式表示pm的长;(3)在(2)的条件下,连结pc,则在cd上方的抛物线部分是否存在这样的点p,使得以p、c、f为顶点的三角形和aem相似?若存在,求出此时m的值,并直接判断pcm的形状;若不存在,请说明理由考点:二次函数综合题分析:(1)将a(3,0),c(0,4)代入y=ax22ax+c,运用待定系数法即可求出抛物线的解析式;(2)先根据a、c的坐标,用待定系数法求出直线ac的解析式,进而根据抛物线和直线ac的解析式分别表示出点p、点m的坐标,即可得到pm的长;(3)由于pfc和aem都是直角,
45、f和e对应,则若以p、c、f为顶点的三角形和aem相似时,分两种情况进行讨论:pfcaem,cfpaem;可分别用含m的代数式表示出ae、em、cf、pf的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出pcm的形状解答:解:(1)抛物线y=ax22ax+c(a0)经过点a(3,0),点c(0,4),解得,抛物线的解析式为y=x2+x+4;(2)设直线ac的解析式为y=kx+b,a(3,0),点c(0,4),解得,直线ac的解析式为y=x+4点m的横坐标为m,点m在ac上,m点的坐标为(m,m+4),点p的横坐标为m,点p在抛物
46、线y=x2+x+4上,点p的坐标为(m,m2+m+4),pm=peme=(m2+m+4)(m+4)=m2+4m,即pm=m2+4m(0m3);(3)在(2)的条件下,连结pc,在cd上方的抛物线部分存在这样的点p,使得以p、c、f为顶点的三角形和aem相似理由如下:由题意,可得ae=3m,em=m+4,cf=m,pf=m2+m+44=m2+m若以p、c、f为顶点的三角形和aem相似,分两种情况:若pfcaem,则pf:ae=fc:em,即(m2+m):(3m)=m:(m+4),m0且m3,m=pfcaem,pcf=ame,ame=cmf,pcf=cmf在直角cmf中,cmf+mcf=90,pc
47、f+mcf=90,即pcm=90,pcm为直角三角形;若cfpaem,则cf:ae=pf:em,即m:(3m)=(m2+m):(m+4),m0且m3,m=1cfpaem,cpf=ame,ame=cmf,cpf=cmfcp=cm,pcm为等腰三角形综上所述,存在这样的点p使pfc与aem相似此时m的值为或1,pcm为直角三角形或等腰三角形点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解(2013泸州)如图,在直角坐标系中
48、,点a的坐标为,点b的坐标为,已知抛物线经过三点a、b、o(o为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点c,使的周长最小。若存在,求出点c的坐标。若不存在,请说明理由;(3)如果点p是该抛物线上轴上方的一个动点,那么是否有最大面积。若有,求出此时p点的坐标及的最大面积;若没有,请说明理由。(注意:本题中的结果均保留根号)。(2013眉山)如图,在平面直角坐标系中,点a、b在x轴上,点c、d在y轴上,且ob=oc=3,oa=od=1,抛物线yax2bxc(a0)经过a、b、c三点,直线ad与抛物线交于另一点m。求这条抛物线的解析式;p为抛物线上一动点,e为直线ad上
49、一动点,是否存在点p,使以点a、p、e为顶点的三角形为等腰直角三角形?若存在,请求出所有点p的坐标;若不存在,请说明理由。请直接写出将该抛物线沿射线ad方向平移个单位后得到的抛物线的解析式。bcmxyaodoxy1-118题图(2013绵阳)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:2a+b0;bac;若-1mn1,则m+n;3|a|+|c|2|b|。其中正确的结论是 (写出你认为正确的所有结论序号)。(2013绵阳)如图,二次函数y=ax2+bx+c的图象的顶点c的坐标为(0,-2),交x轴于a、b两点,其中a(-1,0),直线l:x=m(m1)与x轴交于d。(1)求二次函数
50、的解析式和b的坐标;(2)在直线l上找点p(p在第一象限),使得以p、d、b为顶点的三角形与以b、c、o为顶点的三角形相似,求点p的坐标(用含m的代数式表示);(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点q,使bpq是以p为直角顶点的等腰直角三角形?如果存在,请求出点q的坐标;如果不存在,请说明理由。abcdoxyl(2013内江)若抛物线y=x22x+c与y轴的交点为(0,3),则下列说法不正确的是()a抛物线开口向上b抛物线的对称轴是x=1c当x=1时,y的最大值为4d抛物线与x轴的交点为(1,0),(3,0)考点:二次函数的性质分析:a根据二次函数二次项的系数的正负确定抛物线的开口方向b利用x=可以求出抛物线的对称轴c利用顶点坐标和抛物线的开口方向确定抛物线的最大值或最小值d当y=0时求出抛物线与x轴的交点坐标解答:解:抛物线过点(0,3),抛物线的解析式为:y=x22x3a、抛物线的二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业环保人员工作计划
- 2024销售人员个人工作计划
- 2024学校办公室工作计划表
- 名师工作室半年工作计划
- 2024销售管理人员工作计划
- 2024年企业办公室工作计划样本
- 《财务报表分析》课件
- 2024年素拓部个人工作计划方案
- 一年级少先队工作计划
- 煤矿安全生产工作计划范文目标
- 黑龙江省哈尔滨市香坊区2023-2024学年八年级上学期期末数学试题
- 女性私密的课件
- 动车组转向架检修与维护-轮对的检修
- Unit9第1课时(SectionA1a-2c)(教学课件)八年级英语上册(人教版)
- 5G技术应用与发展
- 收货确认单模版
- 处理班级突发事件方法处理班级纠纷案例分析
- 《时代广场的蟋蟀》阅读试题(含答案)三套
- 屋面防水报价单
- 实验训练3数据增删改操作
- 《给数学教学添一道“味”:基于绘本的小学低段数学教学内容创生研》读书笔记模板
评论
0/150
提交评论