新课标高中文科数学公式大全_第1页
新课标高中文科数学公式大全_第2页
新课标高中文科数学公式大全_第3页
新课标高中文科数学公式大全_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中数学公式及知识点速记一、函数、导数1、函数的单调性x、x a,b,x x 那么 设 2211f(x) f(x) 0 f(x)在a,b上是增函数;21f(x) f(x) 0 f(x)在a,b上是减函数.21 (x) 0f(x)f(xy f(x)f)(x) 0f为减为增函数;若在某个区间内可导,若(2)设函数,则,则函数.2、函数的奇偶性xf( x) f(x)f(x)是偶函数;,则,都有 对于定义域内任意的 xf( x) f(x)f(x)是奇函数。对于定义域内任意的,则,都有奇函数的图象关于原点对称,偶函数的图象关于y轴对称。x)x f(y处的导数的几何意义3、函数在点0 (xf)fx,(x)

2、p(x)(x)xy fy f(,相应的切线方函数在点在处的导数是曲线处的切线的斜率0000 (x)(x f x)y y.程是0004、几种常见函数的导数nn 1xsinx) cos(sinx) (x) nxx(cosc0 ;11xxxxe) ) alna(e(a(lnx(logx);一 axlnax5 导数的运算法则uv uuv ()v 0)( uvv) u v(uv) u v(u ) .(. 2. (1) 3 - 2vv6、会用导数求单调区间、极值、最值0xffxx 0 y f时:、求函数.当的极值的方法是:解方程70xf 0 f0xxfx是极大值;(1)如果在附近的左侧,右侧 ,那么00x

3、xffx 0f0x是极小值.(2)如果在附近的左侧,右侧,那么00二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式sin221 sincos tan. , =. cos9、正弦、余弦的诱导公式k看成锐角时该函数的符号;的同名函数,前面加上把的正弦、余弦,等于k看成锐角时该函数的符号。的余名函数,前面加上把的正弦、余弦,等于210、和角与差角公式sin) sin cossin(cos;sin) cos sincoscos(;+ itan tantan().tantanl、二倍角公式 11 cossin2sin .2222 2sin 1 sinl cos22cos costa

4、n2 tan2. 2 tanl 21 cos22;cos2cos2 , 1 cos 2 公式变形:2 cos122; ,sin 1 cos22sin 2 12、三角函数的周期)x )y ysin(cos(x的周期3, , x6r及函数,0)为常数,且 aw0, x6r(a, 3函数2 kt , zx kt )x tan(y .的周期(a, 3 ,0);函数为常数,且 aw0,2 ) y sin(x的周期、最值、单调区间、图象变换函数13、辅助角公式 14b22tan)sin(xabay sinx bcosx 其中 一 a 15、正弦定理 cabr 2.csinsinbsina 、余弦定理 16

5、 222aabc b ccos 2;222b ca cosb 2ca;222c b 2cab acos.17、三角形面积公式111bsina caabsinc s bcsin. 22218、三角形内角和定理)b (aba c cab%中,有-ba(19 的数量积、或内积)与 cos| b|a b |a2。、平面向量的坐标运算),(xyy(x,)yxob oa (x ,y ab. b , a,则设(1) 21121221b aba),yy(x,x)(yxx y. =,=(2) 设=,则 22112121 22ayxa )yx(,设(3)二,贝u、两向量的夹角 公式 210 bba)y(x(x,y

6、,)=设,且=,则,2211, yyx xba 2211 cos2222bay yx x2112 22、向量的平行与垂直a bba/ 0 xyxy .12210 a b 0 yy xx)0(a ba .2112三、数歹!j项的和的关系23、数列的通项公式与前n,sn 1 1 aa s a a a).n项的和为的前(数列n1n2nn2n s,s 1n n24、等差数列的通项公式*) na d(n a (n 1)d dn a ; 1n1 n项和公式为、等差数列其前25) an(a11)dn(n 2nnds ) (an na d .佃2222 26、等比数列的通项公式a *nn1 )aq na q(

7、n ; 一 1nq项的和公式为 27、等比数列前nnqaa )a(1 q m1 ,q11 ,q q1 s sq 1.或 nn 1,q na1qna,11四、不等式yx yyx,x xy都是正数,则有时等号成立。,当、已知28 2ypxyx p2yx时和(1)若积是定值;,则当有最小值 12xyx yssyx .(2)若和时积,则当是定值有最大值一 4五、解析几何29、直线的五种方程y y k(x x)p(x,y)kl).,且斜率为(直线过点(1)点斜式11111y kx bl在y轴上的截距2 ()斜截式(b为直线).y yx x11 y yp(x,y)p(x,y)x x).3 ()两点式、()

8、( 2112121221y yx x1212.yx1 0b a、ba、(4)截距式分别为直线的横、纵截距, ()ba0 ax by c 0).(其中a(5)一般式、b不同时为、两条直线的平行和垂直30bx :y kl:y kx bl ,若212112cdbb k k,l|l ;212112.1kk l l 2121、平面两点间的距离公式31j22)(y (x x)y d)y)(x,(x,y). ,b(ab,a2211112232、点到直线的距离 |c by |axoo d)y(x,p0 by cax l).直线:,(点j0022ba 圆的三种方程 33、222rb) ( a) y (x.1)圆

9、的标准方程( 22220f ey x y dxf ed4 0).(2)圆的一般方程(cos rx a .3)圆的参数方程(sin ry b 34、直线与圆的位置关系222r b)(x a) (y0 byax c:直线的位置关系有三种与圆0 r相离d;0 r相切d ;220 相交 d r d 2r .弦长=aa bb cd .其中22a b35、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质cos ax22 yxc222 1 (a b 0)a c be 1,参数方程是,离心率.椭圆: 一 22 basinby a 22yxcb222 1 c a be 1,渐近线方程是 .(a0,b0),双

10、曲线:,离心率x y 22aabapp2y 2px(,0)x 。抛物线上的点到焦点距离等于它到准线的距离.抛物线:,焦点,准线 2236、双曲线的方程与渐近线方程的关系2222yyxx b 1 0 .渐近线方程:(1 )若双曲线方程为x y 2222ababa22yxxy b0 .若渐近线方程为(2)双曲线可设为x y22abbaa2222yyxx 10 0,焦点在x轴上,若双曲线与 有公共渐近线,可设为( 2222abab焦点在 y轴上).2px2y37 、抛物线的焦半径公式p20)(p y 2px | x|pf焦半径抛物线.(抛物线上的点到焦点距离等于它到准线的距离。)一 02pppx a

11、b x x x .38、过抛物线焦点的弦长221122六、立体几何、证明直线与直线平行的方法39 )平行四边形(一组对边平行且相等)(21()三角形中位线、证明直线与平面平行的方法40 )直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行)(1 )先证面面平行(2、证明平面与平面平行的方法41直线分别与另一平面平行)平面与平面平行的判定定理(一个平面内的两条相交.、证明直线与直线垂直的方法42转化为证明直线与平面垂直、证明直线与平面垂直的方法43直线垂直)两条相交(1)直线与平面垂直的判定定理(直线与平面内.)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另

12、一个平面)(2、证明平面与平面垂直的方法44平面与平面垂直的判定定理(一个平面内有一条直线与另一个平面垂直)、柱体、椎体、球体的侧面积、表面积、体积计算公式452 r2rl 2rl2圆柱侧面积=,表面积2 r rlrl 二圆椎侧面积=,表面积 1shv hs.(是柱体的高)是柱体的底面积、_柱体31shv hs.(是锥体的高)是锥体的底面积、锥体3423 r4s rv r,球的半径是其表面积,则其体积.3、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算46、点到平面距离的计算(定义法、等体积法)47、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。48正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。七、概率统计、平均数、方差、标准差的计算49xxx1? _ _ _ _ 2222n12x x x)(x x)?()s (x x: 平均数 方差: n12nn 1222 x)s (xx) (xx) ?(x:标准差 n21n50、回归直线方程nn一一 yyx x xy ynx_ _ 而 nr bnnbxy a .,其中 222nxx xx m 1i1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论