版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高一数学教案5篇着眼于眼前,不要沉迷于玩乐,不要沉迷于学习进步没有别人大的痛苦中,进步是一个由量变到质变的过程,只有足够的量变才会有质变,沉迷于痛苦不会改变什么。下面就是小编给大家带来的高一数学教案,希望能帮助到大家!高一数学教案1【教学目标与解析】1、教学目标(1)理解函数的概念;(2)了解区间的概念;2、目标解析(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,
2、对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。【教学过程】问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任
3、给一个t,按照给定的对应关系,都有的一个高度h与之对应。问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积s与之相对应。问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?4.2在从集合a到集合b的一个函数f:ab中,集合a是函数的定义域,集合b是函数的值域吗
4、?怎样理解f(x)=1,xr?4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?高一数学教案21.教材(教学内容)本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用.2.设计理念本堂
5、课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标.3.教学目标知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题.过程与方法目标:体会数学建模思想、类比思想
6、和化归思想在数学新概念形成中的重要作用.情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美.4.重点难点重点:任意角三角函数的定义.难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透.5.学情分析学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念.在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构.6.教法
7、分析“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构.这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用.7.学法分析本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标.8.教学设计(过程)一、引入问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?问题2:研究“任
8、意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?问题3:当角clip_image002的终边在绕顶点o转动时,终边上的一个点p(x,y)必定随着终边绕顶点o作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?二、原有认知结构的改造和重构问题4:当角clip_image0021是锐角时,clip_image004,线段op的长度clip_image006这几个量之间有何关系?学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数学生阅读教材,并思考:问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数
9、的定义来理解它?学生讨论并回答三、新概念的形成问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?学生回答,并阅读教材,得到任意角三角函数的定义.并思考:问题7:任意角三角函数的定义符合我们高中所学的函数定义吗?展示任意角三角函数的定义,并指出它是如何刻划圆周运动的并类比函数的研究方法,得出任意角三角函数的定义域和值域。四、概念的运用1.基础练习口算clip_image008的值.分别求clip_image010的值小结:)画终边,求终边与单位圆交点的坐标,算比值)诱导公式(一)若clip_image012,试写出角clip_image0022的值。若clip_image0
10、15,不求值,试判断clip_image017的符号若clip_image019,则clip_image021为第象限的角.例1.已知角clip_image0023的终边过点clip_image024,求clip_image026之值若p点的坐标变为clip_image028,求clip_image030的值小结:任意角三角函数的等价定义(终边定义法)例2.一物体a从点clip_image032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clip_image034,试用clip_image0341表示物体a所在位置的坐标。若该物体作圆周运动的圆的半径变为clip_image006
11、1,如何用clip_image0342来表示物体a所在位置的坐标?小结:可以采用三角函数模型来刻画圆周运动五、拓展探究问题8:当角clip_image0024的终边绕顶点o作圆周运动时,角clip_image0025的终边与单位圆的交点clip_image039的坐标clip_image041clip_image043与角clip_image0026之间还可以建立其它函数模型吗?思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clip_image0027正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clip_image00
12、28余弦值、正切值呢?六、课堂小结问题9:请你谈谈本节课的收获有哪些?七、课后作业教材p21第6、7、8题高一数学教案3一、教材直线与圆的位置关系是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程
13、、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。(三)情感态度价值观目标激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。四、教学重难点(一)重点用解析法研究直线与圆的位置关系。(二)难点体会用解
14、析法解决问题的数学思想。五、教学方法根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。六、教学过程(一)导入新课教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?教师引
15、导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。(二)新课教学探究新知教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。判断方法:(1)定义法:看直线与圆公共点个数即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断和0的大小关系。(2)比较法:圆心到直线的距
16、离d与圆的半径r做比较,(三)合作探究深化新知教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?让学生自主探索,讨论交流,并阐述自己的解题思路。当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进
17、一步确定他们的位置关系。最后明确解题步骤。(四)归纳总结巩固新知为了将结论由特殊推广到一般引导学生思考:可由方程组的解的不同情况来判断:当方程组有两组实数解时,直线l与圆c相交;当方程组有一组实数解时,直线l与圆c相切;当方程组没有实数解时,直线l与圆c相离。活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。(五)小结作业在小结环节,我会以口头提问的方式:(1)这节课学习的主要内容是什么?(2)在数学问题的解决过程中运用了哪些数学思想?
18、设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。七、板书设计我的板书本着简介、直观、清晰的原则,这就是我的板书设计。高一数学教案4一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等
19、观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,函数教学设计。对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。教学重点是函数的概念,难点是对函数概念的本质的理解。学生现状学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到
20、学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。二、教学三维目标分析1、知识与技能(重点和难点)(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。(3)、掌握定义域的表示法,如区间形式等。(4)、了解映射的概念。2、过程与方法函数的概念及其相关知识点较为抽
21、象,难以理解,学习中应注意以下问题:(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。(2)、面向全体学生,根据课本大纲要求授课。(3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。3、情感态度与价值观(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案函数教学设计。(2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。三、教学器材多媒体ppt课件
22、四、教学过程教学内容教师活动学生活动设计意图函数课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫思考与讨论
23、:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问
24、题,总结更好的掌握函数概念,通过问题来更好的掌握知识函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫小结(用时五分钟)简单讲述本节的知识点,重难
25、点做笔记前后知识的连贯,总结,使学生更明白知识点五、教学评价为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践
26、能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。高一数学教案5目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义重点:集合的基本概念教学过程:1.引入(1)章头导言(2)集合论与集合论的-康托尔(有关介绍可引用附录中的
27、内容)2.讲授新课阅读教材,并思考下列问题:(1)有那些概念?(2)有那些符号?(3)集合中元素的特性是什么?(4)如何给集合分类?(一)有关概念:1、集合的概念(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个对象叫做这个集合的元素.集合通常用大写的拉丁字母表示,如a、b、c、元素通常用小写的拉丁字母表示,如a、b、c、2、元素与集合的关系(1)属于:如果a是集合a的元素,就说a属于a,记作aa(2)不属于:如果a不是集合a的元素,就说a不属于
28、a,记作要注意“”的方向,不能把aa颠倒过来写.3、集合中元素的特性(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.(2)互异性:集合中的元素一定是不同的.(3)无序性:集合中的元素没有固定的顺序.4、集合分类根据集合所含元素个属不同,可把集合分为如下几类:(1)把不含任何元素的集合叫做空集(2)含有有限个元素的集合叫做有限集(3)含有无穷个元素的集合叫做无限集注:应区分,0等符号的含义5、常用数集及其表示方法(1)非负整数集(自然数集):全体非负整数的集合.记作n(2)正整数集:非负整数集内排除0的集.记作n_n+(3)整数集:全体整数的集合.记作z(4)有理数集:全体有
29、理数的集合.记作q(5)实数集:全体实数的集合.记作r注:(1)自然数集包括数0.(2)非负整数集内排除0的集.记作n_n+,q、z、r等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成z_堂练习:教材第5页练习a、b小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质课后作业:第十页习题1-1b第3题高一数学教案1【教学目标与解析】1、教学目标(1)理解函数的概念;(2)了解区间的概念;2、目标解析(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;【问题诊断分析】
30、在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。【教学过程】问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?设计意图:通过以上
31、问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积s与之相对应。问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这
32、两个集合分别叫什么名称?4.2在从集合a到集合b的一个函数f:ab中,集合a是函数的定义域,集合b是函数的值域吗?怎样理解f(x)=1,xr?4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?高一数学教案21.教材(教学内容)本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,
33、并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用.2.设计理念本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标.3.教学目标知识与技能目
34、标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题.过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用.情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美.4.重点难点重点:任意角三角函数的定义.难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透.5.学情分析学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念.在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单
35、位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构.6.教法分析“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构.这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用.7.学法分析本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标.8.教
36、学设计(过程)一、引入问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?问题3:当角clip_image002的终边在绕顶点o转动时,终边上的一个点p(x,y)必定随着终边绕顶点o作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?二、原有认知结构的改造和重构问题4:当角clip_image0021是锐角时,clip_image004,线段op的长度clip_image006这几个量之间有何关系?学生回答,分析结论,指出这种关系就
37、是我们在初中学习过的锐角三角函数学生阅读教材,并思考:问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解它?学生讨论并回答三、新概念的形成问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?学生回答,并阅读教材,得到任意角三角函数的定义.并思考:问题7:任意角三角函数的定义符合我们高中所学的函数定义吗?展示任意角三角函数的定义,并指出它是如何刻划圆周运动的并类比函数的研究方法,得出任意角三角函数的定义域和值域。四、概念的运用1.基础练习口算clip_image008的值.分别求clip_image010的值小结:)画终边,求终边与单位圆交点的坐标,算比值
38、)诱导公式(一)若clip_image012,试写出角clip_image0022的值。若clip_image015,不求值,试判断clip_image017的符号若clip_image019,则clip_image021为第象限的角.例1.已知角clip_image0023的终边过点clip_image024,求clip_image026之值若p点的坐标变为clip_image028,求clip_image030的值小结:任意角三角函数的等价定义(终边定义法)例2.一物体a从点clip_image032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clip_image034,试用
39、clip_image0341表示物体a所在位置的坐标。若该物体作圆周运动的圆的半径变为clip_image0061,如何用clip_image0342来表示物体a所在位置的坐标?小结:可以采用三角函数模型来刻画圆周运动五、拓展探究问题8:当角clip_image0024的终边绕顶点o作圆周运动时,角clip_image0025的终边与单位圆的交点clip_image039的坐标clip_image041clip_image043与角clip_image0026之间还可以建立其它函数模型吗?思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clip_imag
40、e0027正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clip_image0028余弦值、正切值呢?六、课堂小结问题9:请你谈谈本节课的收获有哪些?七、课后作业教材p21第6、7、8题高一数学教案3一、教材直线与圆的位置关系是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质
41、。二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。(三)情感态度价值观目标激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律
42、的能力,解题时养成归纳总结的良好习惯。四、教学重难点(一)重点用解析法研究直线与圆的位置关系。(二)难点体会用解析法解决问题的数学思想。五、教学方法根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。六、教学过程(一)导入新课教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个
43、半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。(二)新课教学探究新知教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。判断方法:(1)定义法:看直线与圆公共点个数即研究方程组解的
44、个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断和0的大小关系。(2)比较法:圆心到直线的距离d与圆的半径r做比较,(三)合作探究深化新知教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?让学生自主探索,讨论交流,并阐述自己的解题思路。当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面
45、所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。(四)归纳总结巩固新知为了将结论由特殊推广到一般引导学生思考:可由方程组的解的不同情况来判断:当方程组有两组实数解时,直线l与圆c相交;当方程组有一组实数解时,直线l与圆c相切;当方程组没有实数解时,直线l与圆c相离。活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。(五)小结作业在小
46、结环节,我会以口头提问的方式:(1)这节课学习的主要内容是什么?(2)在数学问题的解决过程中运用了哪些数学思想?设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。七、板书设计我的板书本着简介、直观、清晰的原则,这就是我的板书设计。高一数学教案4一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函
47、数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,函数教学设计。对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。教学重点是函数的概念,难点是对函数概念的本质的理解。学生现状学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识
48、来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。二、教学三维目标分析1、知识与技能(重点和难点)(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等
49、。(3)、掌握定义域的表示法,如区间形式等。(4)、了解映射的概念。2、过程与方法函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。(2)、面向全体学生,根据课本大纲要求授课。(3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。3、情感态度与价值观(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案
50、函数教学设计。(2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。三、教学器材多媒体ppt课件四、教学过程教学内容教师活动学生活动设计意图函数课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知
51、识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国融资租赁行业运作模式及未来投资规划分析报告
- 2024-2030年中国蚝壳粉市场竞争战略及投资风险分析报告
- 2024-2030年中国蓝莓果汁行业市场营销模式及发展竞争力分析报告版
- 2024-2030年中国茶粉市场竞争状况与营销趋势预测报告
- 2024-2030年中国花青素市场营销状况与投资盈利预测报告
- 2024-2030年中国色甘酸钠行业市场运营模式及未来发展动向预测报告
- 2024-2030年中国航空电子商务行业发展模式及投资规划研究报告
- 2024-2030年中国自备列行业竞争趋势及投资模式分析报告
- 2024-2030年中国组合曲轴行业发展现状投资策略分析报告
- 2024-2030年中国精细乳化均质泵行业市场发展规模及投资可行性分析报告
- 护理专业人才培养方案
- 小学生航海知识讲座
- 心电监护并发症预防及处理
- 甲鱼宣传方案策划
- 夜班人员的补贴和福利政策
- 河北省石家庄市长安区2023-2024学年五年级上学期期末语文试卷
- 直播运营团队组织架构与各岗位职责研究
- 慢病管理及远程医疗的应用
- 学校个性化课程管理制度
- 肺炎支原体性肺炎护理课件
- 黑色素瘤护理的课件
评论
0/150
提交评论