下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题6.1反比例函数(1)主备人课时教学目标知识与技能目标:了解反比例函数的意义,理解反比例函数的概念; 会求简单实际问题中的反比例函数解析式.程序性目标:从现实情景和学生的已有知识经验出发,讨论两个变量之间 的相互关系,从而加深对函数概念的理解;使学生经历抽象反比例函数概念的过程中感悟反比例函数的概念.情感与价值观目标:通过反比例函数概念的教学,使学生亲身经历知识的发生、 发展的过程,培养学生的自主、合作的意识以及确立良好的认 知观;学生通过对反比例函数的简单应用,使其初步形成数学的建 模思识和能力.教学重点反比函数的概念教学难点例1涉及较多的科学学科知识,学生理解问题时有f的 难度.教学媒
2、体准备教学设计过程(教学程序设计;教法设计;学法设计;教材的处理与媒体.)一、通过对两个变量之间的反比例关系的讨论和探究,使学生感受彼此之间 特殊的 对应关系,从而加深对函数概念的理解.(创设情境写出卜列各关系:1、长方形的长为6,范y和面积x之可有什么关系?2、长方形的回积为6, 一边长x和另一边长y之间要有什么关系?)两个相关联的量,一个量变化,另一个量也随着变化,如果两个变量的积 是一个不为零的常数,我们就说这两个变量成反比例.借助正比例关系与反比 例关系的类比,为问题的后续探究构建感性的氛围.(请看下面几个问题:探究:问题1:北京到杭州铁路线长为1661km 一列火车从北京开往杭州,记
3、火车全 程的行驶时间为x(h),火车行驶的平均速度为y (km/h),(1)你能完成下列表格吗?x(h)12151722y(km/h)87.4y与x成什么比例关系?能用一个数学解析式表示吗?)问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),请写出另一边的长y(米)与乂的关系式.根据矩形面积可知xy = 24,即,,)使学生在体验探究的过程中,感受知识的形成过程,从而为知识的内化和 正迁移创造了条件.二、引导学生尝试自主、合作的学习,使学生经历知识构建和发现的过程, 借此提出反比例函数的概念,培养了学生建模的意识、也发展了数学建模的
4、 能力. (挑战自我1、某住宅小区要种植一个面积为1000平方米的矩形草坪,草坪长为y米, 宽为x米,则y关于x的关系式为;2、已知北京市的总面积为1.68 x 104平方千米,全市总人口为 n人,人均 占有土地面积为 s平方千米,则s关于n的关系式为;3、京沪线铁路全程为1 463 km,某列车平土9速度为v (km/h),全程运行时 问为t (h),则v关于t的关系式为.)构建互动、和谐的课堂教学氛围,使学生对反比例函数概念完成从感性体验到理性认知的过渡.(发现:一般地,若变量y与x反比例,则有xy=k(k为常数,20 ),也就是y=k . x归纳:上述几个函数都具有y=k的形式,一般地形
5、如y=k (k是常数,kw0) xx 的函数叫做反比例函数(proportional function ) . k叫做反比例函数的比例 系数,且反比例函数的自变量x的值不能为零.)(练习1、下列函数中,哪些是反比例函数?说出反比例函数的比例系数 y = -3x; y = 2x+1;(3)y=-; y =3(x-1)2+1 ;x(5)y= (s 是常数,s*0); xy=- :; x=-5y ;)x4利用学生对反比例函数概念的初步认识,引导学生借助自主练习,进一步加大学生对该概念的正迁移力度.三、利用阿基米德的“撬动地球”的历史故事,结合了学生的心理发展特点, 很好的激发了学生对问题探究的兴趣.
6、我们常说,于其让学生 “苦学”,不 如让学生“乐学”. 创设一种欲罢不能的心理氛围,从而使学生形成了问题探究的动机.进一步培养学生分析问题、解决问题的数学建模能力.(背景知识给我一个支点,我可以撬动地球!阿基米德)(【例11如图,阻力为1000n阻力臂长为5cm.设动力y (n),动力臂为x (cnj)(图中杠杆本身所受重力略去不计.杠杆平衡时:动力动力臂=阻力阻力臂)(1)求y关于x的函数解析式.这个函数是反比例函数吗?如果是,请说出比例系数;甫i(2)求当x=50时,函数y的值,并说明这个值的实际意义; 利用y关于x的函数解析式,说明当动力臂长扩大到原来的 n倍时,所需动力将怎样变化?)例
7、题1涉及较多的科学学科的知识,学生在理解问题的背景时有一定的难度,是本节教学的难点,教师在给出例题以前,有必要介绍一下“杠 杆原理”,借助多媒体的教学辅助作用,使问题的出示显得活泼、直观,增强 了问题的趣味性,从而更好的促使学生对问题的体验、探究.(回顾与思考练1. 一个三角形,一边长为x cm,这边上的高为y cm,它的面积为25 cm2.求y 关于x的函数关系式,并判断是什么函数?(2)自变量x的取值范围(3)当y = 10 时x的值.练2. 一个矩形的面积是20cn2,相邻的两条边长为xcm和y cm,那么变量y是x 的函数吗?是反比例函数吗?为什么?练3.某村有耕地346.2公顷,人口
8、数量n逐年发生变化,那么该村人均占有耕 地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?)在一次引导学生通过对以上问题的回顾与思考,更有效的促使学生亲历知 识发生和发展的过程.很好的紧扣了本课时的过程性教学目标.(课内练习:1、已知反比例函数y=- - , 3x说出比例系数;求当x=- 10时函数的值;一 1 一 、一 ,一求当y= 22 时自变重x的值.2、设面积为10cm的三角形的一边长为a (cm),这条边上的高为hn(cm), 求h关于a的函数解析式及自变量a的取值范围;h关于a的函数是不是反比例函数?如果是,请说出它的比例系数求当边长a=25cmb寸,这条边上的高
9、.)应该说,本课时的教法设计能很好的结合学生的心理发展特点和规律、结 合学生的认知水平和经验、结合学生发展的能力要求.应该真正确立“以人为 本”的教学理念.课堂教学中情景、例题、互动练习的设计;及多媒体的应用 无不体现了这样的要求.四、借助学生自主进行的课时及所 学问题的小结,辅之以教师对反馈问题的 设计,应该在培养学生良好的思维品质(反思),在培养学生对问题看法的自 我校正、自我反馈的意识和能力有一定的作用 . (通过这节课的学习,你有什么收获?)(交流反思:本堂课,我们讨论了具有什么样的函数是反比例函数,一般地,形如y=k (k是常数,kw0)的函数叫做反比例函数(proportional , xfunction ).k叫做反比例函数的比例系数,其中反比例函数的自变量x的值不能为零.) (检测反馈1 .分别写出下列问题中两个变量间的函数关系式,指出哪些是正比例函数,哪些是反比例函数,哪些既不是正比例函数也不是反比例函数?(1)小红一分钟可以制作2朵花,x分钟可以制作y朵花;(2) 体积为100cm的长方体,高为hcm时,底面积为scm2;(3) 用一根长50cm的铁丝弯成一个矩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年某金融机构与某科技公司关于金融科技产品研发合同
- 2024年度起重设备租赁合同范本(含操作员派遣)3篇
- 2024年度品牌授权合同标的:高端服装品牌区域独家授权2篇
- 老年气胸合并COPD的护理
- 康复轮椅的使用
- 化纤企业绿色生产实践考核试卷
- 安全设备科个人工作总结
- 妇科科普健康教育
- 糖尿病足的综合治疗
- 免疫治疗申报指南解读
- 第四届“长城杯”网络安全大赛(高校组)初赛备赛试题库-上(单选题部分)
- 国开2024年秋季《形势与政策》大作业答案
- 北师大版四年级上册除法竖式计算题300道及答案
- 2024-2030年中国橡胶伸缩缝行业市场发展趋势与前景展望战略分析报告
- 新疆和田地区2023-2024学年八年级上学期期末考试英语试题(含听力)
- 波形护栏安装施工合同
- 七年级上册历史-七上历史 期中复习【课件】
- 瑜伽合同范本
- 魔术表演娱乐行业研究报告
- JT∕T 795-2023 事故汽车修复技术规范
- 幼儿园健康领域《脸上的表情》课件
评论
0/150
提交评论