下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学经济建模在经济贸易中的运用 摘要:经济快速发展的同时,企业应正确了解经济形势才能出台相关的政策,促进企业的发展。经济贸易过程复杂,涉及多学科、多领域,在这一过程中经济建模以数学为基础,将经济研究转化为数学建模,从而使企业经营者了解经济发展趋势,因此对经济贸易发展具有积极意义。文章就经济建模在经济贸易中的应用问题进行了分析。 关键词:数学经济建设;经济贸易;应用 经济发展具有多变性,随着我国进入国际社会,如何对经济形势做出正确的判断是企业发展的主旋律。企业发展过程中,成本计算、订货量计算都对于企业发展来说都是重点。要适应国际形势,我国企业应采用新的方法确保经济贸易研究的合理性。数学的应用使得
2、经济的独特性得以发挥,并且能够促进企业团队合作的形成,可以应用数学知识解决其中的多项问题,促使经济贸易顺利地发展。当然数学作为基础工作,如何发挥其积极作用还需要相关人员对数学,对经济做更深入的研究。 一、数学经济建模总述 长期的经济研究证明了数学经济建模的作用。但经济贸易复杂,单纯从数学角度出发,并不能解决经济问题,而是将其作为一种基础工作,了解经济贸易的相关情况,从而建立数学经济模型。数学经济建模是将复杂的经贸问题转化为简单的数学符号,从而使经济发展态势更加直观,便于企业做出决策。该模型的建立事实上就是将经济作为目标,将数学中的公式、理念应用于经济研究。我国经济发展的历程也说明了数学经济建模
3、与经贸发展之间的关系。数学经济模型表现在经济发展的各个阶段,应以企业的商品质量、数量或者送货日期等变量建立的数学模型,可以帮助企业明确成本支出,了解经济发函流程,从而促进经济贸易的发展。 二、数学经济模型建立的分类 目前,在经济模型建立中,我们采用概率类型和确定类型两种。其中,概率类建模主要解决经济发展中的随机事件,而确定类型建模则主要是解决需要具体数据的数学问题,需要根据数学理论的提出,模型的构建将经济问题转化为数学问题,并通过数学计算得到最终的结果。数学这一门基础学科,涉及多个领域,对很多学科的研究具有指导意义,如物理、经济。与数学相关的各个学科之间也并非独立的,在经济贸易中所发生的问题,
4、如果与数学相关,我们就可以考虑用数学模式的方式来解决。如何发挥数学经济建模在经济贸易问题解决中的作用将成为数学研究与经济研究共同解决的问题。 三、数学经济建模在经济贸易研究和发展中的应用 (一)极限理论在经济贸易研究中的应用 多年来的经济贸易研究中,数学理论有着广泛的应用。数学经济模型主要用于计算企业运营成本,买家与卖家均需要对其生产或购买成本进行分析。数学的极限理论和函数理论就可以用于生产量的确定以及购买量的确定。如企业囤货数量的确定要以数学理论来计算,囤货量过小,会导致供不应求,一旦产品市场价格上涨,将影响企业的效益获得。而囤货量过大,则会造成企业的进货成本提高,产品积压严重。一旦出现产品
5、更新,将会给企业带来更大的损失。数学理论可以很好的帮助企业解决订货余量的问题。在订货过程中,通过数学函数关系式可以计算出进货量数值对于企业成本费用的影响,从而选择正确的进货量,从根本上消除企业的成本提高和货品积压。在经济学中,一段时间内,企业库存数量与订货所产生的费用相加最小值就是其最佳的经济订货量。有这一过程中,数学模型的建立必不可少,对于经济行为的预测也是管理者的主要任务。 (二)数学表格在经贸贸易研究中的应用 将各项经济贸易中所产生的结果一一列举是一种有效的问题解决方法,此方法主要用于求解企业订货的经济点,即订货量为多少时,企业可获得的经济效益最大。企业要明确订货方法,然后确定每种方法应
6、当花费的总费用,从多种方法中选择一种最佳的经济方法,原则是满足企业运营需求,符合市场发展规律,并且达到企业经济利润理论上的最大化。无论是哪种方法的应用,都要充分考虑到数学与经济之间的关系,关注经济发展的具体形式,考虑到方法选择所能带来的一切后果。 (三)微积分在经济贸易中的应用 微积分在经济贸易中同样具有广泛的应用。以某企业为例,该企业产品的年需求量为A,采购分次进行,设次数为B,每次订货产生的费用为C,最后库存量需要保持批量的一半,库存用就是D元,总费用就可以用公式标示:E=AD/2B+BC。这样就可以得到方程式B=AD/2C,从而得到费用最小值,也能够明确企业库存与定义费用之间的关系式。 四、总结 数学经济模型的建立对于经贸研究来说具有重要意义,为决策人员提供了理论基础。在企业发展中,明确订货量并确保订货的合理性能够确保企业成本支出最小化,从而确保企业经济利润的获得。数学中的多种理论在经济研究中具有重要意义。在实践中,如何研究正确利用正确的数学模型来解决经济问题,这对于企业来说十分关键。 参考文献: 1贺凤兰,王冰从统计分析角度看我国数学建模研究与发展J现代情报,2013(12) 2李宝萍常微分方程在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于夫妻双方离婚协议书
- 土地租赁合同双方协议书七篇
- 2025无财产离婚协议书
- 面神经炎病因介绍
- 错构瘤病因介绍
- 荨麻疹病因介绍
- 11化学中考真题汇编《氧气的性质》及答案
- (2024)乳制品加工项目可行性研究报告写作范本(一)
- 2024-2025学年人教版八年级英语上学期期末真题 专题01 单项选择(安徽专用)
- 2023年耐磨剂项目融资计划书
- 国民体质监测与评定
- 河南省南阳市五校2022-2023学年八年级上学期期末联考数学试题(含答案)
- 点亮小灯泡(全国一等奖)
- 《维修电工》课程标准
- 普通财务述职报告范文汇总五篇
- 笔试考试:HSK笔试(一级)真题模拟汇编(共213题)
- 铁路选线设计之断链-课件
- 英文电影鉴赏知到章节答案智慧树2023年北华大学
- 2023年考研考博-考博英语-西南政法大学考试历年真题摘选含答案解析
- 川2020G145-TY 四川省超限高层建筑抗震设计图示
- 病理学(南开大学)知到章节答案智慧树2023年
评论
0/150
提交评论