四、旋转怎么出、怎么考、怎么解 (2)_第1页
四、旋转怎么出、怎么考、怎么解 (2)_第2页
四、旋转怎么出、怎么考、怎么解 (2)_第3页
四、旋转怎么出、怎么考、怎么解 (2)_第4页
四、旋转怎么出、怎么考、怎么解 (2)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、旋转问题考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。旋转性质-对应线段、对应角的大小不变,对应线段的夹角等于旋转角。注意旋转过程中三角形与整个图形的特殊位置。一、 直线的旋转1、(2009年浙江省嘉兴市)如图,已知A、B是线段MN上的两点,以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC,设(1)求x的取值范围;(2)若ABC为直角三角形,求x的值;CABNM(第1题)(3)探究:ABC的最大面积?2、(2009年河南)如图,在RtABC中,ACB=90, B =60,BC=2点0是AC的中点,过点0的直线l从与AC重合的位置开始,

2、绕点0作逆时针旋转,交AB边于点D.过点C作CEAB交直线l于点E,设直线l的旋转角为.(1)当=_度时,四边形EDBC是等腰梯形,此时AD的长为_; 当=_度时,四边形EDBC是直角梯形,此时AD的长为_;(2)当=90时,判断四边形EDBC是否为菱形,并说明理由3、(2009年北京市)在中,过点C作CECD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1)(1)在图1中画图探究:当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点

3、E 逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=,AE=1,在的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围.分析:此题是综合开放题-已知条件、问题结论、解题依据、解题方法这四个要素中缺少两个或两个以上,条件需要补充,结论需要探究,解题方法、思考方向有待搜寻。 解决此类问题,一般要经过观察、实验、分析、比较、类比、归纳、推断等探究活动来寻找解题途径。可从简单、特殊的情况入手,由此获得启发和感悟,进而找到解决问题的正确途径,是我们研究数学问题,进行猜想和证明的思维方法。华罗庚说:善于退,足够地退

4、,退到最原始而不失重要性的地方,这是学好数学的一个诀窍。提示:(1)运用三角形全等, (2)按CP=CE=4将x取值分为两段分类讨论;发现并利用好EC、EF相等且垂直。4、(2009 黑龙江大兴安岭)已知:在中,动点绕的顶点逆时针旋转,且,连结过、的中点、作直线,直线与直线、分别相交于点、(1)如图1,当点旋转到的延长线上时,点恰好与点重合,取的中点,连结、,根据三角形中位线定理和平行线的性质,可得结论(不需证明)图2图3图1(N)(2)当点旋转到图2或图3中的位置时,与有何数量关系?请分别写出猜想,并任选一种情况证明二、 角的旋转5、(2009年中山)(1)如图1,圆心接中,、为的半径,于点

5、,于点求证:阴影部分四边形的面积是的面积的(2)如图2,若保持角度不变,求证:当绕着点旋转时,由两条半径和的两条边围成的图形(图中阴影部分)面积始终是的面积的(2009襄樊市)如图,在梯形中,点是的中点,是等边三角形(1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变设求与的函数关系式;(3)在(2)中:当动点、运动到何处时,以点、和点、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;当取最小值时,判断的形状,并说明理由ADCBPMQ60提示:第(3)问,两种情形- PMAB , PMCD第(3)问, 求出y最小值为3,此时x=PC=2,点P到BC中点

6、,PMBC . 6、(2009年重庆市)已知:如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3过原点O作AOC的平分线交AB于点D,连接DC,过点D作DEDC,交OA于点E(1)求过点E、D、C的抛物线的解析式;(2)将EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的P

7、CG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由6题图yxDBCAEEO提示:第(3)问,PGC为等腰三角形按哪两边相等分类讨论,求出点P坐标,再求点Q坐标。三、 三角形的旋转7、(2009年邵阳市)如图,将RtABC(其中B34,C90)绕A点按顺时针方向旋转到AB1 C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小等于()A.56 B.68 C.124 D.18034B1CBAC18、(2009年包头)如图,已知与是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30,将这两个三角形摆成如图(1)所示的形状,使点在同一条直线上,且点与点重合,将图(1

8、)中的绕点顺时针方向旋转到图(2)的位置,点在边上,交于点,则线段的长为 cm(保留根号)C(F)D图(2)9、(2009河池)如图9,的顶点坐标分别为若将绕点顺时针旋转,得到,则点的对应点的坐标为 1234567891234567OABCyx图910、(2009年郴州市)如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,与的和总是保持不变,那么与的和是_度11、(2009年台州市)如图,三角板中,CAB三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 12、(20

9、09年凉山州)将绕点逆时针旋转到使在同一直线上,若,则图中阴影部分面积为 cm230CBA30(12题)图613、(2009年郴州市)如图6,在下面的方格图中,将ABC先向右平移四个单位得到AB1C1,再将AB1C1绕点A1逆时针旋转得到AB2C2,请依次作出AB1C1和AB2C2。14、(2009年达州)如图7,在ABC中,AB2BC,点D、点E分别为AB、AC的中点,连结DE,将ADE绕点E旋转180得到CFE.试判断四边形BCFD的形状,并说明理由.15、(2009襄樊市)如图所示,在中,将绕点顺时针方向旋转得到点在上,再将沿着所在直线翻转得到连接 (1)求证:四边形是菱形; (2)连接

10、并延长交于连接请问:四边形是什么特殊平行四边形?为什么?ADFCEGB16、(2009年株洲市)如图,在中,将绕点沿逆时针方向旋转得到(1)线段的长是 ,的度数是 ;(2)连结,求证:四边形是平行四边形;ADGECB(3)求四边形的面积17、(2009烟台市)如图,直角梯形ABCD中,且,过点D作,交的平分线于点E,连接BE(1)求证:;(2)将绕点C,顺时针旋转得到,连接EG.求证:CD垂直平分EG.(3)延长BE交CD于点P求证:P是CD的中点即18、(2009年山西省)ADBECFADBECF在中,将绕点顺时针旋转角得交于点,分别交于两点(1)如图1,观察并猜想,在旋转过程中,线段与有怎

11、样的数量关系?并证明你的结论;(2)如图2,当时,试判断四边形的形状,并说明理由;(3)在(2)的情况下,求的长提示:(1)考查三角形旋转过程中的不变量再导出图形各线段间的各种关系; (2)在特殊条件下,得到线段间的特殊关系。AECFBD图1图3ADFECBADBCE图2F19、(2009年牡丹江)已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证当绕点旋转到不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、又有怎样的数量关系?请写出你的猜想,不需证明分析:此类题的特点是-提供问题的一个特殊的情况(给出命题的

12、题设、结论),让你探索使结论成立的证明过程,然后通过运动变换,使题设条件改变,图形随之发生变化产生新的问题情景,再去探究新情景中原来的结论是否成立,还是又有新的关系。 解题方法思路一般是-先探究特殊情景下的解题方法,再内化感悟、类比、猜想与探究。(针对特殊情景解题方法需添加什么辅助线,用到什么定理,是什么方法思想,能否直接模仿,还是要创新)提示:图2、图3按退还到图1位置作辅助线,证明方法思路一样。20、(2009年常德市)图9 图10 图11图8如图9,若ABC和ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,AMN是等边三角形(1)当把ADE绕A点旋转到图10的位置时,C

13、D=BE是否仍然成立?若成立请证明,若不成立请说明理由;(2)当ADE绕A点旋转到图11的位置时,AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,ADE与ABC及AMN的面积之比;若不是,请说明理由提示:(1)抓住不变量易解, (2)能证得ADC 与 AEB是直角三角形,再用勾股定理和相似三角形的性质求解。FBADCEG图21、(2009东营)FBADCEG图已知正方形ABCD中,E为对角线BD上一点,过E点作EFBD交BC于F,连接DF,G为DF中点,连接EG,CG(1)求证:EG=CG;(2)将图中BEF绕B点逆时针旋转45,如图所示,取DF中点G,连接EG,CG问(1

14、)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由 (3)将图中BEF绕B点旋转任意角度,如图所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)提示:考查三角形的中线、三角形全等、矩形的性质等。(2)作适当辅助线,构造全等三角形。也可连接GA,得GC=GA,过点G作AB的垂线,证GE=GA.DFBACE图DOBAxyCy=kx+1图(9)-122、(2009年甘肃庆阳)(8分)如图14,在平面直角坐标系中,等腰RtOAB斜边OB在y轴上,且OB4(1)画出OAB绕原点O顺时针旋转90后得到的三角形;(2)求线段OB在上述旋转过程中所

15、扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积)图2223、(2009年广西梧州)如图(9)-1,抛物线经过A(,0),C(3,)两点,与轴交于点D,与轴交于另一点B(1)求此抛物线的解析式;(2)若直线将四边形ABCD面积二等分,求的值;(3)如图(9)-2,过点E(1,1)作EF轴于点F,将AEF绕平面内某点旋转180得MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,作MG轴于点G,若线段MGAG12,求点M,N的坐标EFMNGOBAxy图(9)-2Q提示:第(3)问类似09武汉中考压轴题,利用好中心对称的性质-对应边平行且相等。四、 四边形的旋转2

16、4、(2009年山东青岛市)如图边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是 ADCBE25、(2009呼和浩特)如图所示,正方形的边在正方形的边上,连接(1)求证:EFGDABC(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,说出旋转过程;若不存在,请说明理由26、(2009年济宁市)在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).(1)求边在旋转过程中所扫过的面积;(2)旋转过程中,当

17、和平行时,求正方形旋转的度数;OABCMN(3)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.提示:延长BA交y轴于点E。第(3)问,证明OAEOCN , OMNOME,得MN=AM+CN.27、(2009年宁波市)(Q)BAOxP(图2)yQCBAOxP(图1)yCBAOyx(备用图)(第27题)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为,直线BC经过点,将四边形OABC绕点O按顺时针方向旋转度得到四边形,此时直线、直线分别与直线BC相交于点P、Q(1)四边形OABC的形状是 ,当时,的值是 ;(2)如图1,当四边形的顶点落在轴正半轴时,求的值;如图,当四边形的

18、顶点落在直线上时,求的面积(3)在四边形OABC旋转过程中,当时,是否存在这样的点P和点Q,使?若存在,请直接写出点P的坐标;若不存在,请说明理由提示:第(3)问,过点Q作QHOA于H,连接OQ,则QH=OC=OC,易证PQ=OP,设BP=x,BQ=2x;按旋转时点P在点B左、右两种情况分类讨论。28、(2009年湖北荆州)xyOA图A图xyO如图,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为21),BAD120,对角线均在坐标轴上,抛物线经过AD的中点M填空:点坐标为 ,D点坐标为 ;操作:如图,固定菱形ABCD,将菱形EFGH绕O点

19、顺时针方向旋转度角,并延长OE交AD于P,延长OH交CD于Q探究1:在旋转的过程中是否存在某一角度,使得四边形AFEP是平行四边形?若存在,请推断出的值;若不存在,说明理由;探究2:设AP,四边形OPDQ的面积为,求与之间的函数关系式,并指出的取值范围五、 抛物线的旋转29、(2009年宁德市)如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(3)如图(2),点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论