化工热力学习题解答_第1页
化工热力学习题解答_第2页
化工热力学习题解答_第3页
化工热力学习题解答_第4页
化工热力学习题解答_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、化工热力学习题解答南京工业大学化学化工学院化工热力学习题2-1.容积1m3的贮气罐,其安全工作压力为100atm,内装甲烷100kg,问罐内最高温度不得超过多少度?如当地最高温度是40,问罐的 最大装料是多少kg?(用R-K方程计算)解:1)由附录二查得甲烷的临界参数为TC=190.6K,pc=4.600Mpa(Pam6K0.5)/mol2m3/molmol又即用迭代法求解如下迭代次数 T/K Z0 194.9 11 406.9 0.4791 3 198.7 0.9807 259.9 0.7500 262.7 0.7420 261.3 0.7460 261.3 0.7460即罐内最高温度不得超

2、过t=261.3-273.15=-11.85用迭代法求解如下迭代次数 z h0 1 0.11621 0.8876 0.1309 2 0.8794 0.1321 3 0.8788 0.1321z=0.8788又pV=nZRTm=nM=4.4271031610-3=70.8kg此时罐的最大装料为70.8kg2-2用下列方程求200,1.0133 MPa时异丙醇的压缩因子与体积:(1)取至第三维里系数的Virial方程,已知B=-388cm3/mol,C=-26000cm6/mol2(2)用普遍化第二维里系数关系式。(TC=508.2K,PC=4.762MPa,=0.7)解:1)又+即又即压缩因子z

3、=0.8884;体积V=3.4510-3m3/mol2):则 又即压缩因子z=0.9022,体积V=3.510-3m3/mol2-3 将van der Waals方程化成Virial 方程式;并导出van der Waals 方程常数a、b表示的第二维里系数B的函数表达式。 2-7一个体积为0.283 m3的封闭槽罐,内含乙烷气体,温度290K,压力2.48103Kpa,试问将乙烷加热到478K时,其压力是多少?解:由附录查得乙烷的临界参数。TC=305.4K,PC=4.884MPa,VC=1.4810-4 m3/mol; =0.098,1)T=290K,P=2.48MpaTr=T/Tc=0.

4、95 Pr=P/Pc=0.51使用普遍化第二维里系数法。(验证:使用普遍化第二维里系数法是正确的。)2)T=478K, Tr=478/305.4=1.5652解法1:普遍化第二维里系数法。则解法2:R-K方程=54.597105-7.1341105=4.746Mpa2-12将等摩尔氮气和甲烷的混合物在等温下从0.10133MPa,-17.78压缩到5.0665 MPa。试用普遍化第二维里系数的关系求4.5kg的混合物,在两种状态下的体积各是多少?解:设N2与甲烷的摩尔数都为n,则28n+16n=4.5103解得n=102.3mol1)时CH4: N2: Tr12=T/Tc12=255.37/1

5、55.1=1.65计算所需相关数据如下ijTcij/KPcij/MPaVcij/(m3/kmol)zcijcijTrijPrijB0B1Bij/(m3/kmol)11126.23.3940.08950.2900.0402.020.03/1.49-0.0540.130-0.015122190.64.6000.09900.2880.0081.340.022/1.10-0.1810.0887-0.062112155.13.9560.09420.2890.0241.65-0.1070.118-0.0340又即2)时B2=B1=-0.0363m3/kmol此时体积为0.0783m3第三章3.2试使用下列

6、水蒸气第二维里系数数据计算在573.2K和506.63Kpa下蒸汽的z,及 T/K 563.2 573.2 583.2 B/cm3/mol -125 -119 -113解:解法1: 解法2:3-3试运用适当的普遍化关系计算1mol的1,3-丁二烯从2533.13KPa,400K压缩到12665.63KPa,550K时的。解:查表得TC=425K,PC=4.327Mpa,真实气体 400K,2533.13KPa ,M1真实气体550K,12665.63KPa ,M2理想气体 400K,2533.13KPa ,理想气体 550K,12665.63KPa1)2533.13KPa和400K时 用普遍化

7、维里系数法2)12665.63KPa和550K时 用普遍化压缩因子法查图得 查图得 3-5已知饱和蒸汽和液态水的混合物在505K下是平衡态存在,如果已知该混合物比容为41.70cm3/g,根据蒸汽表上的数据计算(1)百分湿含量 (2)混合物的焓 (3)混合物的熵.解:t=505-273.15=231.850C时, 用内插法得到:(1)百分湿含量为(1-0.594)100%=40.6%3-7 试求服从Van der waals状态方程的气体膨胀系数和等温压缩系数的表达式,并证明解: vdw方程,变换为第二问:由上面计算可得而根据vdw方程,直接计算p对T的偏导可得:所以,3-8试用普遍化方法计算

8、丙烷气体在378K,0.507Mpa下的剩余焓与熵。解: ; 用普遍化维里系数法第四章二、是非题1. 在一定温度和压力下的理想溶液的组分逸度与其摩尔分数成正比。(对。即)2. 理想气体混合物就是一种理想溶液。(对)3. 对于理想溶液,所有的混合过程性质变化均为零。(错。V,H,U,CP,CV的混合过程性质变化等于零,对S,G,A则不等于零)4. 对于理想溶液所有的超额性质均为零。(对。因)5. 理想溶液中所有组分的活度系数为零。(错。理想溶液的活度系数为1)6. 体系混合过程的性质变化与该体系相应的超额性质是相同的。(错。同于3)7. 对于理想溶液的某一容量性质M,则。(错,同于3)8. 理想

9、气体有f=P,而理想溶液有。(对。因)9. 温度和压力相同的两种理想气体混合后,则温度和压力不变,总体积为原来两气体体积之和,总热力学能为原两气体热力学能之和,总熵为原来两气体熵之和。(错。总熵不等于原来两气体的熵之和)10. 因为GE (或活度系数)模型是温度和组成的函数,故理论上与压力无关(错。理论上是T,P,组成的函数。只有对低压下的液体,才近似为T和组成的函数)11. 在常温、常压下,将10cm3的液体水与20 cm3的液体甲醇混合后,其总体积为 30 cm3。(错。混合过程的体积变化不等于零,或超额体积(对称归一化的)不等于零)12. 纯流体的汽液平衡准则为f v=f l。(对)13

10、. 混合物体系达到汽液平衡时,总是有。(错。两相中组分的逸度、总体逸度均不一定相等)14. 当的极限情况下,气体的f/p比值趋于无穷,其中f是逸度。(错。)15. 均相混合物的总性质与纯组分性质之间的关系总是有 。(错。应该用偏摩尔性质来表示)16. 对于二元混合物体系,当在某浓度范围内组分2符合Henry规则,则在相同的浓度范围内组分1符合Lewis-Randall规则。(对。)17. 理想溶液一定符合Lewis-Randall规则和Henry规则。(对。)18. 符合Lewis-Randall规则或Henry规则的溶液一定是理想溶液。(错,如非理想稀溶液。)19. 因为,所以。(错,后者错

11、误,原因同于3)20. 二元溶液的Henry常数只与T、P有关,而与组成无关,而多元溶液的Henry常数则与T、P、组成都有关。(对,因,因为,二元体系,组成已定)21. 偏摩尔体积的定义可表示为。(错。因对于一个均相敞开系统,n是一个变数,即)三、计算题: 4-3、某二元混合物组分1和2的的偏摩尔焓可用下式表示: 证明b1必须等于b2。4-4、如果在T、P恒定时,某二元体系中组分(1)的偏摩尔自由焓符合,则组分(2)应符合方程式。其中,G1、G2是T、P下纯组分摩尔自由焓,x1、x2是摩尔分率。 解:(1) 4-6、用普遍化三参数法计算压力为100atm,温度为300K时,CO气体的逸度和逸

12、度系数。解: ; 使用普遍化维里系数法。 如果用压缩因子图法:4-7、试计算甲乙酮(1)和甲苯(2)的等分子混合物在323K和205104Pa下的4-8、式为气液两相平衡的一个基本限制,试问平衡时下式是否成立?也就是说,当混合系处于平衡时其气相混合物的逸度是否等于液相混合物的逸度。4-14根据甲醇(10-水(20系统在0.1013MPa下的汽液平衡数据,求算该体系的超额自由焓。低压下的平衡计算式为平衡组成平衡温度纯组分的蒸汽压/MPaxi0.400yi0.7260C75.360.1530.03914-15 333K,105Pa下,环己烷(1)和四氯化碳(2)液体混合物的摩尔体积V(cm3/mo

13、l)如下表所示。X1VX1VX1V0.00101.4600.20104.0020.85111.8970.02101.7170.30105.2530.90112.4810.04101.9730.40106.4900.92112.7140.06102.2280.50107.7150.94112.9460.08102.4830.60108.9260.96113.1780.10102.7370.70110.1250.98113.4090.15103.3710.80111.3101.00113.640试计算:(1)纯物质摩尔体积V1和V2;(2)x2=0.2、0.5和0.8的混合物的混合体积; (3)x

14、2=0.2、0.5和0.8的混合物的;(4)无限稀释混合物中偏摩尔体积的数值再由以上数据,分别用下列四个标准状态,求出,并给出对x1的曲线;(5)组分1,2均用Lewis-Randall规则标准状态;(6)组分1,2均用Henry定律标准态;(7)组分1用Lewis-Randall规则标准状态;组分2用Henry定律标准态; (8)组分1用Henry定律标准态;组分2用Lewis-Randall规则标准状态。上述四个标准状态,意指不同类型的理想溶液。试问对组分1的 稀溶液来说,哪一种能更好地表达实际的体积变化?对组分1的 浓溶液呢?解:(1)V1113.64(cm3/mol)和V2101.46

15、(cm3/mol);同理:x20.5时,x20.8时,对组分1的 稀溶液来说,组分1用Henry定律标准态;组分2用Lewis-Randall规则标准状态,能更好地表达实际的体积变化。对组分1的 浓溶液,组分1用Lewis-Randall规则标准状态;组分2用Henry定律标准态,能更好地表达实际的体积变化。(5)组分1,2均用Lewis-Randall规则标准状态;(6)组分1,2均用Henry定律标准态;(7)组分1用Lewis-Randall规则标准状态;组分2用Henry定律标准态(8)组分1用Henry定律标准态;组分2用Lewis-Randall规则标准状态。19、某二元混合物的逸

16、度可以表达为 ,其中A,B,C为T,P之函数,试确定 (1)若两组分均以Lewis-Randall定则为标准态,求。(2)组分1以亨利定则为标准态,组分2 以Lewis-Randall定则为标准态,求。解:由于是的偏摩尔性质,由偏摩尔性质的定义知同样得到1) 若两组分均以Lewis-Randall定则为标准态2) 组分1以亨利定则为标准态,组分2 以Lewis-Randall定则为标准态由第五章5-1. (1)气体由20,2.0m3 (状态1)经绝热过程到150,1m3(状态2),输入功为100kJ,求其内能变化? (2)初态同(1),经恒容过程加热到150(状态3),需热量95kj,问此过程

17、内能变化如何? (3)(2)中处于状态3的气体经等温压缩到1.0m3(状态2),同时移走185kj热量,问其内能变化如何?需功若干?(本题按封闭体系计算)解: 对封闭体系 (1) (2)此过程为恒容过程 , W=0 (3)20,2.0m3 (1),1m3(2) 150(3)U是状态函数 又答: , ,W=190kJ5-2、理想气体从T1,V1可逆膨胀到2V1,试比较该过程按等压、等温、绝热方式进行时,过程的Q、W和T,并在一张PV图上画出三个过程状态的变化。(按封闭体系考虑)。解:1)等压过程:2)等温过程:3) 绝热过程5-5.当体系沿途径abc由状态a到b时,传入体系的热量是20kcal,

18、体系做功7.5kcal,问(1) 如果体系沿途径adb做功2.5kcal,则传入体系的热量是多少?(2) 如果体系沿途径bea从状态b回到a,外界对体系作功5kcal,则体系吸热还是放热,其量为多少?(3) 如果体系在a时以能量为0,在d时为10kcal,求过程ad及过程db中各吸收多少热量?(本题按封闭体系)解:对封闭体系 P c b e a d V (1)(2) U是状态函数,与具体途径无关,体系沿bea从状态b回到a,则 放热(3) 体系在a时能量为0时 即Ua=0时, 对过程db: 因为等容升压 W=0又体系沿途径adb作功2.5kcal 且,+2.5=12.5kcal答: (1)传入

19、体系的热量Q=15 kcal (2) 体系放热Q= -17.5kcal(3)从ad Q=12.5kcal 从db Q=2.5kcal5-6. 用泵以756kg/h的速度把水从45m深的井底打到离地10m高的开口储槽中,冬天为了防冻,在运送过程中用一加热器,将31650kj/h的热量加到水中,整个体系散热速度为26375kj/h,假设井水为2,那么水进入水槽十时,温度是上升还是下降?其值若干?假设动能变化可忽略,泵的功率为2马力,=其效率为55%(1马力=735w)(本题按稳流体系)解: 解: 以1kg作为基准 已知Q吸=31650KJ/hr Q放=-26375 KJ/hr ;忽略动能变化水进入

20、贮槽时,温度上升 t=2时, 查饱和水蒸汽表 查饱和水蒸汽表 t=0时 = -0.02kj/kg t=5时, =20.98kj/kg0 水进入贮槽时,温度上升 t2= 或者 5-8. 一可逆热机用某种比热不变的理想气体为公质,按下述循环操作,自状态1恒容加热到状态2,由状态2绝热膨胀到状态3,然后由状态3经恒压过程回到状态1 ,证明此循环中净功与所吸热量之比为- ()P 2 绝 热 1 3V解:等容过程吸热 绝热过程Q2-3=0等压过程放热 ;循环过程又 (等压过程) T2/T1=P2/P1(等容过程)W/Q=-1-(T3/T1-1)/(T2/T1-1)=-1-(V3/V1-1)/(P2/P1

21、-1)得证5-9一汽缸活塞装置中以气体经过不可逆过程后,内能增加了32kJ,在此过程中,体系从540K的贮热器接受热量100KJ,然后又经过一可逆过程回到始态,此过程也只在体系与540K的贮热器之间发生,已知经此两过程后,贮热器的熵变为0.01KJ/K,试计算(1),在第一个不可逆过程中,体系所做的功(2),在第二个可逆过程中所传递的热量(3),在第二个可逆过程中体系所做的功 解:(1)因为 所以W1=-Q1+(2) 因为S贮=-Q体系1 /T贮 - Q体系2 /T贮=0.01Q体系2= -Q体系1-S贮T贮=-100 -5.4= -105.4kJ(3)循环过程:所以答:(1)第一个不可逆过程

22、中体系所做的功为:-68kJ (2)在第二个可逆的过程中所传递的热量 105.4kJ (3)在第二个可逆过程中体系所做的功为 73.4kJ 5-11设有100KG水被下述热流体加热,温度为288K升至333K,计算热流体与被加热的水的总熵变(1) 700kpa的饱和蒸汽(2) 300kpa的饱和蒸汽(3) 300kpa,250的过热蒸汽(4) 与100kg的333k热水完全逆流换热(5) 与最少量370k热水完全并流换热假定(1)(2)(3)种情况下蒸汽正好完全冷凝,但不过冷,水的CP=1kcal/kg.k解:Q体=m1*CP (T2 T1)=100*1*(333-288)=4500kcal=

23、18828kj(1)查700kpa饱和蒸汽表T=165 hfg=2066.3kj/kg Sf=1.9922kj/kg.k Sg=6.7080kj/kg.k设需要700kpa饱和蒸汽m3 kgQ环= - hfg*m3= -Q体m3= Q体/ hfg=18828/2066.3=9.112kg或查饱和水蒸气表 T1=288k Sf1=0.2223kj/kg.k T2=333k Sf2=0.8293kj/kg.k所以所以(2)300kpa饱和蒸汽查300kpa饱和蒸汽表hfg=2163.8kj/kg Sf=1.6718kj/kg.k Sg=6.9919kj/kg.k所以m3=Q吸/ hfg=18828

24、/2163.8=8.701kg所以=m3*(Sf -Sg)=8.701*(1.6718 -6.9919)= -46.29kj/k同上所以 =60.7 -46.29=14.45kj/k=3.45 kcal/k(3)300kpa,250过热蒸汽 查过热水蒸气表300kpa,250时,h=2967.625kj/kg S=7.5155kj/kg.k 查蒸气表300kpa时,饱和水hf=561.47kj/kg ;Sf=1.6718kj/kg.k所以m3=Q吸/h-hf=18837/(2967.62-561.47)=7.825kg所以=m3*(Sf -S)=7.825*(1.6718 7.5155)= -

25、45.73kj/k= =60.7 45.73=15.01kj/k=3.5916 kcal/k(4)与100kg的333k的热水逆流换热 因为逆流换热且两者均为100kg被加热者的终态温度与被冷却者的始态温度一样,所以被冷却者其末态温度为被加热的初态288k,所以= - =0(5)与最少量的370K热水完全并流换热因为是并流换热,所以热水最低温度不低于333K)288 K 333 K370 K 333 K 查饱和水蒸气表 T=370K hf1=405.76kj/kg Sf1=1.27kj/kg.k T=333K hf2=250.50kj/kg Sf2=0.8293kj/kg.km3= Q吸/hf

26、1-hf2=18826/(405.76 250.50)=121.622kg所以=m3*(Sf2-Sf1)=121.622*(98293 1.271)= -53.61kj/k=60.7kj/k= =60.7 53.61=7.13kj/k5-13.设有1mol理想气体在恒温下由10atm,300k经不可逆膨胀至1atm时所做的功是1kcal,计算和Wl(环境温度T0=300k,按稳流体系考虑)解:因为是理想气体恒温,所以 (即)所以Q体=-Wal=-(-1)kcal/mol=4.186*103j/mol所以=Q环/T环= -Q体/T环= -4186/300= -13.95j/mol.k= -Rln

27、(P2/P1)= -8.314*ln(1/10)=19.14J/mol.k所以= = -13.95+19.14=5.19J/mol.kWl=T0=300*5.19=1557Jmol.k答:总熵变为5.19j/mol.k损失功为1.557kj/mol P (kg/cm2) t() H(kcal/kg) S(kcal/kg.k) 1 27 227.8 1.6890 68 27 211.8 1.1273环境温度为275-15.液体(Cp=6.3kj/kg.k),用1400的炉子在接近等压下,从15加热到70,假设过程无热损失,环境温度10,求热效率? 解: (1) 求热效率 答: 热效率=1 =0.

28、1215-23试比较如下几种水蒸气、水和冰的有效能(设基态为298K,0.1MP,其(1)0.15MPa,160过热蒸汽;(2)0.3MPa,160过热蒸汽;(3)0.07MPa,100过热蒸汽;(4)100饱和蒸汽(5)0.1MPa,100饱和水;(6)0.1MPa, 0冰(此时冰H=-334.4kJ/kg; S=-1.2247 kJ/kg.K)序号状态P,MPaT,S(KJ/Kg.K )S0-S(KJ/Kg.K)H(KJ/Kg )H0-H(KJ/Kg)EX(KJ/Kg)基态水0.1013250.36740104.89001过热蒸汽0.151607.4665-7.09952792.8-268

29、8572.32过热蒸汽0.31607.1276-6.76062782.3-2677.5662.83过热蒸汽0.071007.5341-7.16712680.0-2575.2439.44饱和蒸汽0.11007.3549-6.98792676.1-2571.3488.95饱和水0.11001.3069-0.9399419.04-314.2434.16冰0.10-1.22471.5917-334.4439.235.1EX2 EX1 EX4 EX3 EX6 EX55-31 1kg的水在100kPa的恒压下从20加热到沸点,并且在此温度下完全蒸发,如果环境温度为20,试问加给水的热量中最大有多少可转变成

30、功量。解:100kPa ,20水的数据可用20饱和水的数据 ,即20,2.339kPa水的数据。H1=83.96(84.09) (KJ/Kg);S1=0.2966(KJ/Kg.K )100饱和蒸汽H2=2676.1(KJ/Kg);S2=7.3549(KJ/Kg.K )QP= H2 -H1=2676.1-83.96=2592.1(KJ/Kg)Wid/Qp=523.0/2592.1=20.1%.答:加给水的热量中最大可有20.1%可转变成功量。第六章6-2一个朗肯循环蒸汽动力装置的锅炉,供给2000kpa,400 的过热蒸汽给透平,其流量25200kg/h,令气在15kpa压力下排至冷凝器,假定透

31、平是绝热可逆操作的,冷凝器出口为饱和液体,循环水泵将水打回锅炉也是绝热可逆,求:(1) 透平所做的功?(2) 水泵所做的功?(3) 每千克蒸汽从锅炉获得的热量?(4) 每小时从蒸汽透平的第一级出口抽出P=200kpa的蒸汽13800kg,求透平所做的功,(其余条件不变)解:16TS2345mKgmm-m锅炉透平机水泵冷凝器过热器2341回热加热器水泵22mm-m56mKg根据已知的条件查出各点的参数(查水蒸气表)1点,(过热蒸汽) P1=2000kpa H1=3247.6kj/kg T1=400 S1=7.1271kj/kg.k2点,(空气) P=15kpa S2= S1=7.1271kj/k

32、g.k Sg=8.02935kg/kj.k Sf=0.74065kj/kg.k Hg=2597.2kj/kg Hf=221.615kj/kg设2点处干度为X则 8.02935x+0.74065(1-x)=7.1271x=0.876所以 H2=2597.2*0.876+221.615*(1-0.876)=2303.13 kj/kg3点(饱和液体) P=15kpa S3=0.74065kj/kg.k H3=221.615kj/kg4点(未饱和水) p=15kpa S4=S3=0.74065kj/kg.k H4=H3-WP所以(1)透平机所做的功为: Ws= m(H2 H1)= 25200/3600

33、*(2303.13 3247.6)=-6611.5kw (2)水泵所做的功为: WP=m(H4-H3)= 25200/3600*(223.627221.615)=14.085kw (3)每千克蒸汽从锅炉获得的热量 Q1= (4)若每小时从蒸汽透平的第一级出口抽出P=200kpa的蒸汽13800kg P2=200kpa S2=7.1271kj/(kg.k)=S1=S2(等熵过程) 而 Sg=7.1271kj/(kg.k) 所以抽出的为饱和气体 此时Hg=2706.7kj/kg H2=Hg=2706.7kg 透平机所做的功为 Ws= (m- m)(H2 H1)+ m(H2 H1) 或Ws= m(H

34、2 H1)+(m- m)(H2 H2)1 Ws =(25200 13800)/3600*(2303.13 3247.6)+ 13800/3600*(2706.7 3247.6)=-5064.4kw 2 Ws =25200/3600*(2706.7 3247.6)+(25200 13800)/3600(2303.13-2706.7)=-5064.4kw答:(1)透平所做的功为-6611.5kw(2)水泵所做的功为14.085kw(3)每千克蒸汽从锅炉获得的热量为3023.97kj/kg(4)若改为题设条件,则透平所做的功为 -5064.4kw解: 蒸发器压缩机节流阀 S 4 22冷凝器1 5T

35、4 5 1查书上图表 另外1)H2=1860KJ/KgH4=546.08KJ/Kgm=12.51Kg/h=5.57PT=0.695Kw2)H2=1960KJ/KgH4=546.08KJ/Kgm=12.51Kg/h=3.71PT=1.04Kw6-7某动力循环蒸汽透平机,进入透平的过热蒸汽为2.0MPa, 400,排出的气体为0.035MPa的饱和蒸汽,若要求透平机产生3000kW功率,问每小时通过透平机的蒸汽流量是多少?其等熵膨胀效率是多少?假设透平机的热损失相当于轴功的5%。解:查得点1,2,3点的数据如下表。序号状态P,MPaT,H(KJ/Kg )S(KJ/Kg.K )备注1过热蒸汽2400

36、3247.67.12712饱和蒸汽0.03572.4852631.057.71932湿蒸汽0.03572.4852426.457.1271干度x=0.91213饱和水0.03572.485303.4050.98491TS23425根据稳定流动体系的能量平衡方程:12为等熵过程,S2=S1=7.1271(KJ/Kg.K )2点的干度蒸发器压缩机节流阀 S 4 22冷凝器1 5T 4 5 1解:序号状态P,MPaT,H(KJ/Kg )S(KJ/Kg.K )备注1饱和蒸汽0.15161-251650.399.17502过热蒸汽119149.17504饱和液125536.454.59595湿蒸汽0.1

37、5161-25536.456-11 有一氨冷冻循环装置,其制冷能力Q0为4x104 kJ/h,在下列条件下工作,蒸发温度-25,进入压缩机的是干饱和蒸汽,冷凝温度20 , 冷凝后过冷5。试求:1)单位质量制冷剂的制冷能力2)每小时制冷剂的循环量;3)冷凝器中制冷剂放出的热量;4)压缩机理论功率;5)理论制冷系数;(有关数据查氨T-S图)。序号状态P,MPaT,H(KJ/Kg )S(KJ/Kg.K )备注1饱和蒸汽0.15161-251650.399.17502过热蒸汽0.857121872.649.17504过冷液15488.734.43515湿蒸汽0.15161-25488.732TS541

38、435补充习题.制冷循环装置以NH3为共质。制冷能力为10000kcal/hr,冷凝温度25,蒸发温度-20。一技术员根据生产工艺要求,认为这样条件下工作,功耗过大,建议进行改进,冷凝温度仍为25,但过冷到20,蒸发温度改为-5。问:(1) 在T-S图上标出该制冷循环改进前后各状态点(标出各点的T,P);(2) 计算改进前后的制冷系数;(3) 改进后理想功耗可减少多少kw?设压缩过程按可逆绝热过程考虑。有关数据查NH3的T-S图。解:改进前: 1点 -20查氨饱和蒸汽表 得H1=1657.43 kJ / kgS1=9.0962kJ / kg.K P1 =0.1902 MPa2点 查lnP-H图

39、,T4=25对应的P4 =1.003 MPa 与 S2= S1=9.0962kJ / kg.K相交处的点即为2点,P2 =1.003 MPaH2=1880 kJ / kg 3 点 T3=25,P3= P4 =1.003 MPa4 点 T3=25,P4 =1.003 MPa查氨饱和蒸汽表H4=536.45 kJ / kg 5点 H5=H4=536.45 kJ / kg 改进后:1点 -5,查氨饱和蒸汽表 得 H1=1676.35 kJ / kg ,S1=8.8789kJ / kg.K 2 2 2点查lnP-H图,T4=25 与P4=1.003MPa4 3 S2=S1=8.8789kJ / kg.

40、K 相交处的点即为2点4 H2=1800 kJ / kg 3点 T3=25,P3= P4 =1.003 MPa 5 1 4点 T4=20 ,H4=512.46 kJ / kg / kg 5 1 5点 H5= H4=512.46 kJ / kg S 改进后: 改进前改进后=5.03=9.41m=37.29kg/hm=35.91kg/hPT=2.22kWPT=1.233kWPT=0.9866kW; 1.274 kW; 1.181 kW第七章7-2. 压力不太高时,苯(1)与甲苯(2)溶液的汽液平衡体系符合Roult定律,已知纯苯(1)与纯甲苯(2)在不同温度下的饱和蒸汽压如下:t 88 1.268

41、 0.50190 1.343 0.53594 1.506 0.60898 1.683 0.689100 1.777 0.732104 1.978 0.825试求:(1)90,x1=0.30时,体系的气相组成和压力;(2)90,1atm体系的气相和液相的平衡组成(3)试确定在x1=0.55,y1=0.75时该体系的T、P (4) 将含y1=0.3的汽相混合物冷却到100,1atm(总压),求该混合物液化分数与液相组成。(液化分数即混合物冷却至t时,蒸汽的冷凝分数),(5)在上问中,如果混合物的开始组成为y1=0.4,结果如何?解:由题意可知,此体系为完全理想系(1) (2)(3) t 88 1.

42、268 0.501 2.53190 1.343 0.535 2.51094 1.506 0.608 2.47798 1.683 0.689 2.443100 1.777 0.732 2.428104 1.978 0.825 2.398 (4)100,1atm时(5)y1=0.4时; 7-4.乙醇(1)和苯(2)形成一种共沸混合物,已知45时含61.6(mol)乙醇的液相与.含43.3(mol)乙醇的汽相在302mmHg下处于平衡,纯乙醇和纯苯在45下蒸汽压分别为172mmHg与222mmHg,设该体系适用Van Laar方程关联,求45时乙醇-苯恒沸物组成及液面上压力。 恒沸点 解:此体系为部

43、分理想系; 450C下 P-x-y图 P-ybP-xb7-5.纯液体A与B在90时蒸汽压力为液相活度系数汽相为理想气体,问:(1) 与50(mol)A及50(mol)B的液相混合物平衡的蒸汽总压为多少?(2) 能否生成共沸物?如生成的话,恒沸点是最高点还是最低点?为什么?(3) 如已知,导出的组成函数表达式。解:(1)xA=0.5,xB=0.5 (2)解法1:假设生成共沸物,则=1,理想气体解法2:(3)根据Gibbs-Duhem方程:7-6.已知氯仿(1)-甲醇(2)体系活度系数与组成关系可用Van Laar方程,此二元体系形成共沸物。设50时无限稀释活度系数,纯组分饱和蒸汽压计算50(恒沸

44、点)下,总压。解:解:此体系为部分理想系; (1)(2)(3)4)(化工0304班01号毛佳)24.624.4x1pp1p2y1x2024.4024.4010.125.625733.56491922.060810.1391150.90.226.476676.5957719.88090.2491160.80.327.035539.23678317.798750.3416530.70.427.3569411.6038415.753110.4241640.60.527.4721613.7921513.680010.5020410.50.627.3917215.8822311.50950.5798190.40.727.1063317.944649.1616870.6620090.30.826.5860120.043866.5421460.7539250.20.925.7775722.241633.5359360.8628290.1124.624.60107-157-15 题设分析(蒋浩):本题为已知二元体系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论