版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、知识点1:一元二次方程的基本概念3一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置知识点3:已知自变量的值求函数值1当x=2时,函数y=的值为1.知识点4:基本函数的概念及性质1函数y=-8x是一次函数.2函数y=4x+1是正比例函数.3函数是反比例函数.4抛物线y=-3(x-2)2-5的开口向下.5抛物线y=4(x-3)2-10的对称轴是x=3.6抛物线的顶点坐标是(1,2).7反比例函数的图象在第一、三象限.知识点5:数据的平均数中位数与众数知识点6:特殊三角函数值1cos30=
2、 . 2sin260+ cos260= 1.32sin30+ tan45= 2.4tan45= 1.5cos60+ sin30= 1. 知识点7:圆的基本性质1半圆或直径所对的圆周角是直角.2任意一个三角形一定有一个外接圆.3在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4在同圆或等圆中,相等的圆心角所对的弧相等.5同弧所对的圆周角等于圆心角的一半.6同圆或等圆的半径相等.7过三个点一定可以作一个圆.8长度相等的两条弧是等弧.9在同圆或等圆中,相等的圆心角所对的弧相等.10经过圆心平分弦的直径垂直于弦。知识点8:直线与圆的位置关系1直线与圆有唯一公共点时,叫做直
3、线与圆相切.2三角形的外接圆的圆心叫做三角形的外心.3弦切角等于所夹的弧所对的圆心角.4三角形的内切圆的圆心叫做三角形的内心.5垂直于半径的直线必为圆的切线.6过半径的外端点并且垂直于半径的直线是圆的切线.7垂直于半径的直线是圆的切线.8圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1两个圆有且只有一个公共点时,叫做这两个圆外切.2相交两圆的连心线垂直平分公共弦.3两个圆有两个公共点时,叫做这两个圆相交.4两个圆内切时,这两个圆的公切线只有一条.5相切两圆的连心线必过切点.知识点10:正多边形基本性质1正六边形的中心角为60.2矩形是正多边形.3正多边形都是轴对称图形.4正多边形都是中
4、心对称图形.知识点11:一元二次方程的解1方程的根为 .Ax=2 Bx=-2 Cx1=2,x2=-2 Dx=4知识点12:方程解的情况及换元法1一元二次方程的根的情况是 .A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根2不解方程,判别方程3x2-5x+3=0的根的情况是 .A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根11. 用换元法解方程()2-5()+6=0时,设=y,则原方程化为关于y的方程是 .A.y2+5y+6=0 B.y2-5y+6=0 C.y2+5y-6=0 D.y2-5y-6=0知识点13:自变量的取
5、值范围知识点14:基本函数的概念1下列函数中,正比例函数是 . A. y=-8x B.y=-8x+1 C.y=8x2+1 D.y=2下列函数中,反比例函数是 .A. y=8x2 B.y=8x+1 C.y=-8x D.y=-知识点15:圆的基本性质1如图,四边形ABCD内接于O,已知C=80,则A的度数是 . A. 50 B. 80 C. 90 D. 1002已知:如图,O中, 圆周角BAD=50,则圆周角BCD的度数是 .A.100 B.130 C.80 D.503已知:如图,O中, 圆心角BOD=100,则圆周角BCD的度数是 .A.100 B.130 C.80 D.504已知:如图,四边形
6、ABCD内接于O,则下列结论中正确的是 .A.A+C=180 B.A+C=90C.A+B=180 D.A+B=905半径为5cm的圆中,有一条长为6cm的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cm D.6cm6已知:如图,圆周角BAD=50,则圆心角BOD的度数是 . A.100 B.130 C.80 D.507已知:如图,O中,弧AB的度数为100,则圆周角ACB的度数是 .A.100 B.130 C.200 D.508. 已知:如图,O中, 圆周角BCD=130,则圆心角BOD的度数是 .A.100 B.130 C.80 D.50知识点16:点、直线和圆的位置关系1已
7、知O的半径为10,如果一条直线和圆心O的距离为10,那么这条直线和这个圆的位置关系为 .A.相离 B.相切 C.相交 D.相交或相离2已知圆的半径为6.5cm,直线l和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交3已知圆O的半径为6.5cm,PO=6cm,那么点P和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定4已知圆的半径为6.5cm,直线l和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . A.0个 B.1个 C.2个 D.不能确定知识点17:圆与圆的位置关系1O1和O2的半径分别为3
8、cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .A. 外离 B. 外切 C. 相交 D. 内切知识点18:公切线问题1如果两圆外离,则公切线的条数为 .A. 1条 B.2条 C.3条 D.4条5. 已知O1、O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有 条.A.1条 B. 2条 C. 3条 D. 4条知识点19:正多边形和圆1如果O的周长为10cm,那么它的半径为 .A. 5cm B.cm C.10cm D.5cm10已知,正三角形的半径为3,那么这个正三角形的边长为 .A. 3 B. C.3 D.3知识点20:函数图像问题1已知:关于x的一元二次方程的
9、一个根为,且二次函数的对称轴是直线x=2,则抛物线的顶点坐标是 .A. (2,-3) B. (2,1) C. (2,3) D. (3,2)7若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 .A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2)8一次函数y=-x+1的图象在 . A第一、二、三象限 B. 第一、三、四象限 C. 第一、二、四象限 D. 第二、三、四象限10. 已知抛物线y=ax2+bx+c(a0且a、b、c为常数)的对称轴为x=1,且函数图象上有三点A(-1,y1)、B(,y2)、C(2,y3),则y1、y2、y3的大小关系是 .A.y3y1y2 B
10、. y2y3y1 C. y3y2y1 D. y1y30,化简二次根式的正确结果为 . A. B. C.- D.-5. 化简二次根式的结果是 .A. B. C. D.8若a- B.k-且k3 C.k且k3知识点24:求点的坐标1已知点P的坐标为(2,2),PQx轴,且PQ=2,则Q点的坐标是 .A.(4,2) B.(0,2)或(4,2) C.(0,2) D.(2,0)或(2,4)2如果点P到x轴的距离为3,到y轴的距离为4,且点P在第四象限内,则P点的坐标为 .A.(3,-4) B.(-3,4) C.4,-3) D.(-4,3) 3过点P(1,-2)作x轴的平行线l1,过点Q(-4,3)作y轴的
11、平行线l2, l1、l2相交于点A,则点A的坐标是 .A.(1,3) B.(-4,-2) C.(3,1) D.(-2,-4)知识点25:基本函数图像与性质1若点A(-1,y1)、B(-,y2)、C(,y3)在反比例函数y=(k0)的图象上,则下列各式中不正确的是 .A.y3y1y2 B.y2+y30 C.y1+y30 D.y1y3y20 2在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2),若x20x1 ,y12 B.m2 C.m03已知:如图,过原点O的直线交反比例函数y= 的图象于A、B两点,ACx轴,ADy轴,ABC的面积为S,则 .A.S=2 B.2S44已知点(x1,y
12、1)、(x2,y2)在反比例函数y=-的图象上, 下列的说法中:图象在第二、四象限;y随x的增大而增大;当0x1x2时, y1y2;点(-x1,-y1) 、(-x2,-y2)也一定在此反比例函数的图象上,其中正确的有 个.A.1个 B.2个 C.3个 D.4个5若反比例函数的图象与直线y=-x+2有两个不同的交点A、B,且AOB1 B. k1 C. 0k1 D. k06若点(,)是反比例函数的图象上一点,则此函数图象与直线y=-x+b(|b|0;2a+b;c1.其中正确的结论是 .A. B. C. D.知识点35:多项选择问题1 已知:如图,ABC中,A=60,BC为定长,以BC为直径的2 O
13、分别交AB、AC于点D、E,连结DE、OE.下列结论: BC2DE;D点到OE的距离不变;BD+CE2DE;OE为ADE外接圆的切线.其中正确的结论是 . A. B. C. D.知识点36:因式分解1.分解因式:x2-x-4y2+2y= .2.分解因式:x3-xy2+2xy-x= .知识点37:找规律问题1. 阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台级数为一级、二级、三级、逐步增加时,楼梯的上法依次为:1,2,3,5,8,13,21,(这就是著名的斐波拉契数列).请你仔细观察这列数的规律后回答:上10级台阶共有 种上法. 2.把若干个棱长为a的立方体摆
14、成如图形状:从上向下数,摆一层有1个立方体,摆二层共有4个立方体, 摆三层共有10个立方体,那么摆五层共有 个立方体. 7.如图的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.根据图中的数构成的规律可得:图中a所表示的数是 . 8. 在同一平面内:两条直线相交有个交点,三条直线两两相交最多有个交点,四条直线两两相交最多有知识点38:已知结论寻求条件问题1. 如图, AC为O的直径,PA是O的切线,切点为A,PBC是O的割线,BAC的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是 . (只需填一个条件)2.已知:如图,AB为O的直径,P为AB延长
15、线上的一点,PC切O于C,要使得AC=PC,则图中的线段应满足的条件是 .3.已知:如图,四边形ABCD内接于O,过A作O的切线交CB的延长线于P,若它的边满足条件 ,则有ABPCDA.4.已知: ABC中,D为BC上的一点,过A点的O切BC于D点,交AB、AC于E、F两点,要使BCEF,则AD必满足条件 .5.已知:如图,AB为O的直径,D为弧AC上一点,DEAB于E,DE、DB分别交弦AC于F、G两点,要使得DE=DG,则图中的弧必满足的条件是 . 6.已知:如图,RtABC中,以AB为直径作O交BC 于D点,E为AC上一点,要使得AE=CE,请补充条件 (填入一个即可).7.已知:如图,
16、圆内接四边形ABCD,对角线ACBD相交于E点,要使得BC2=CECA,则四边形ABCD的边应满足的条件是 . 8.已知,ABC内接于O,要使BAC的外角平分线与O相切,则ABC的边必满足的条件是 .知识点39:阴影部分面积问题1. 如图,梯形ABCD中,ADBC,D=90,以AB为直径的O切CD于E点,交BC于F,若AB=4cm,AD=1cm, 则图中阴影部分的面积是 cm2.(不用近似值)2.已知:如图,平行四边形 ABCD,ABAC,AEBC,以AE为直径作O,以A为圆心,AE为半径作弧交AB于F点,交AD于G点,若BE=2,CE=6,则图中阴影部分的面积为 . 3.已知:如图, O1与O2内含,直线O1O2分别交O1和O2于A、B和C、D点,O1的弦BE切O2于F点,若AC=1cm,CD=6cm,DB=3cm,则弧CF、AE与线段AC弧、EF弧围成的阴影部分的面积是 cm2. 4.已知:如图,AB为O 的直径,以AO、BO为直径作O1、O2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度全方位保姆雇佣服务与雇主合同
- 2025届四川省乐山第七中学中考生物对点突破模拟试卷含解析
- 南京工业职业技术大学《装配式建筑设计与应用》2023-2024学年第一学期期末试卷
- 南华大学船山学院《数控加工与编程》2023-2024学年第一学期期末试卷
- 南充文化旅游职业学院《音乐文学》2023-2024学年第一学期期末试卷
- 南昌职业大学《微电影创作》2023-2024学年第一学期期末试卷
- 闽南师范大学《卫生化学》2023-2024学年第一学期期末试卷
- 吕梁学院《大数据原理与实践》2023-2024学年第一学期期末试卷
- 洛阳文化旅游职业学院《人力资源管理创新》2023-2024学年第一学期期末试卷
- 泸州医疗器械职业学院《图像采集与处理二》2023-2024学年第一学期期末试卷
- 上海纽约大学自主招生面试试题综合素质答案技巧
- 办公家具项目实施方案、供货方案
- 2022年物流服务师职业技能竞赛理论题库(含答案)
- 危化品安全操作规程
- 连锁遗传和遗传作图
- DB63∕T 1885-2020 青海省城镇老旧小区综合改造技术规程
- 高边坡施工危险源辨识及分析
- 中海地产设计管理程序
- 简谱视唱15942
- 《城镇燃气设施运行、维护和抢修安全技术规程》(CJJ51-2006)
- 项目付款审核流程(visio流程图)
评论
0/150
提交评论