半导体催化-简_第1页
半导体催化-简_第2页
半导体催化-简_第3页
半导体催化-简_第4页
半导体催化-简_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、半导体催化剂半导体催化剂 属于半导体催化剂类型属于半导体催化剂类型: n过渡金属氧化物:过渡金属氧化物:ZnO,NiO,WO3,Cr2O3, MnO2,MoO3V2O5,Fe3O4,CuO等等; n过渡金属复合氧化物:过渡金属复合氧化物:V2O5-MoO3,MoO3-Bi2O3 等等; n某些硫化物某些硫化物 如如MoS2,CoS2等等 半导体催化剂半导体催化剂特点特点 n半导体催化剂半导体催化剂特点特点: 能加速以电子转移为特征能加速以电子转移为特征 的氧化、加氢和脱氢等反应。的氧化、加氢和脱氢等反应。与金属催化剂一与金属催化剂一 样亦是氧化还原型催化剂,其催化性能与电子样亦是氧化还原型催化

2、剂,其催化性能与电子 因素和晶格结构有关。因素和晶格结构有关。 n具有以下优点:具有以下优点:(1)在光、热、杂质的作用下,在光、热、杂质的作用下, 性能会发生明显的变化,这有利于性能会发生明显的变化,这有利于催化剂性能催化剂性能 的调变的调变;(2)半导体催化剂的熔点高半导体催化剂的熔点高,故故热稳定热稳定 性好性好;(3)较金属催化剂的较金属催化剂的抗毒能力强抗毒能力强。 本章主要内容本章主要内容 n定性介绍半导体催化剂的能带结构;定性介绍半导体催化剂的能带结构; n并从能带结构出发,讨论催化剂的电导并从能带结构出发,讨论催化剂的电导 率、逸出功与催化活性的关联率、逸出功与催化活性的关联

3、反应物与催化剂间的反应物与催化剂间的 化学吸附键类型化学吸附键类型 反应物与催化剂间的化学吸附可以看作为反应物与催化剂间的化学吸附可以看作为 在共同组成的新势场下双方电子云的重在共同组成的新势场下双方电子云的重 新分配,分配的结果有下列几种情况新分配,分配的结果有下列几种情况 : n双方共享电子,组成共价键;双方共享电子,组成共价键; n双方电负性相差甚远,组成离子型吸附;双方电负性相差甚远,组成离子型吸附; n双方电负性略有差别,形成极性键吸附双方电负性略有差别,形成极性键吸附。 催化电子理论催化电子理论 n过渡金属氧化物多属半导体类型,而半导过渡金属氧化物多属半导体类型,而半导 体能带理论

4、对能带结构的描述已属比较成体能带理论对能带结构的描述已属比较成 熟,因此借用来说明这类催化剂的催化特熟,因此借用来说明这类催化剂的催化特 性是很自然的。性是很自然的。 n50年代前苏联学者伏肯斯坦应用年代前苏联学者伏肯斯坦应用半导体能半导体能 带理论带理论为解释这类催化剂的催化作用引进为解释这类催化剂的催化作用引进 了催化电子理论,把半导体的导电率、电了催化电子理论,把半导体的导电率、电 子逸出功与催化活性相关联,并解释了一子逸出功与催化活性相关联,并解释了一 部分催化现象。部分催化现象。 半导体的能带结构半导体的能带结构 n一个原于核周围的电子是按能级排列的。一个原于核周围的电子是按能级排列

5、的。 例如例如1S,2S,2P,3S,3P内层电子处于内层电子处于 较低能级,外层电子处于较高能级。较低能级,外层电子处于较高能级。 n固体中许许多多原子的电子轨道发生重叠,其固体中许许多多原子的电子轨道发生重叠,其 中外层电子轨道重叠最多。由于这种重叠作用,中外层电子轨道重叠最多。由于这种重叠作用, 电子不再局限于在一个原子内运动,而是在整电子不再局限于在一个原子内运动,而是在整 个固体中运动,这种特性称为电子的共有化。个固体中运动,这种特性称为电子的共有化。 n重叠的外层电子也只能在相应的轨道间转重叠的外层电子也只能在相应的轨道间转 移运动。例如移运动。例如3 3S S引起引起3 3S S

6、共有化,共有化,2 2P P轨道引起轨道引起 2 2P P共有化共有化 能级示意图能级示意图 禁带、满带或价带禁带、满带或价带 、空带或导带、空带或导带 n3 3S S能带与能带与2 2P P能带之间有一个间隙,其中没有任能带之间有一个间隙,其中没有任 何能级,故电子也不能进入此区,称之为何能级,故电子也不能进入此区,称之为禁带禁带 n下面一部分密集的能级组成一个带,一般充满下面一部分密集的能级组成一个带,一般充满 或部分充满价电子,称为或部分充满价电子,称为满带或价带满带或价带。 n上面一部分密集的能带也组成一个带,在基态上面一部分密集的能带也组成一个带,在基态 时往往不存在电子,只有处于激

7、发态时才有电时往往不存在电子,只有处于激发态时才有电 子进入此带,所以称为子进入此带,所以称为空带空带,又叫,又叫导带导带 n激发到空带中去的自由电子提供了半导体的导激发到空带中去的自由电子提供了半导体的导 电能力电能力 金属能带的结构示意图金属能带的结构示意图 n导体都具有导带(或导体都具有导带(或 者能带结构是迭加者能带结构是迭加 的的) ),此能带没有被,此能带没有被 电子完全充满,在外电子完全充满,在外 电场的作用下,电子电场的作用下,电子 可从一个能级跃迁到可从一个能级跃迁到 另一个能级,因此能另一个能级,因此能 够导电。够导电。 绝缘体的能带的结构示意图绝缘体的能带的结构示意图 n

8、绝缘体的满带己被绝缘体的满带己被 电子完全填满,而电子完全填满,而 禁带很宽禁带很宽(5eV), 满带中的电子不能满带中的电子不能 跃迁到空带上去,跃迁到空带上去, 所以不能导电。所以不能导电。 E 5eV-10eV 半导体半导体 n半导体的禁带很窄,在绝半导体的禁带很窄,在绝 对零度时,电子不发生跃对零度时,电子不发生跃 迁,与绝缘体相似;迁,与绝缘体相似; n但当温度升高时,部分电但当温度升高时,部分电 子从满带激发到空带上去,子从满带激发到空带上去, 空带变成导带,而满带则空带变成导带,而满带则 因电子移去而留下空穴,因电子移去而留下空穴, 在外加电场作用下能够导在外加电场作用下能够导

9、电,故称半导体。电,故称半导体。 半导体的类型半导体的类型 n本征半导体本征半导体:不含杂质,具有理想的完整的晶:不含杂质,具有理想的完整的晶 体结构具有电子和空穴两种载流体,例如体结构具有电子和空穴两种载流体,例如Si、 Ge、PbS、Fe3O4等。等。 n N 型半导体型半导体:含有能供给电子的杂质,此电子:含有能供给电子的杂质,此电子 输入空带成为自由电子,空带变成导带。此杂输入空带成为自由电子,空带变成导带。此杂 质叫施主杂质。质叫施主杂质。 n P型半导体型半导体:含有易于接受电子的杂质,半导:含有易于接受电子的杂质,半导 体满带中的电子输入杂质中而产生空穴,此杂体满带中的电子输入杂

10、质中而产生空穴,此杂 质叫受主杂质。质叫受主杂质。 本征半导体能带的结构示意图本征半导体能带的结构示意图 费米能级费米能级EF nEF是半导体中价电子的平均位能。 n本征半导体,EF在满带和导带之间; nN型半导体,EF在施主能级和导带之间; nP型半导体,EF在受主能级和满带之间。 电子逸出功 n电子逸出功电子逸出功:将一个具有平均位能的电子从固:将一个具有平均位能的电子从固 体内部拉到固体外部所需的最低能量。体内部拉到固体外部所需的最低能量。 n掺入施主杂质使费米能级提高,从而导带电子掺入施主杂质使费米能级提高,从而导带电子 增多并减少满带的空穴,增多并减少满带的空穴,逸出功都降低了逸出功

11、都降低了。 n对于对于N型半导体来说,电导率就增加了;型半导体来说,电导率就增加了; n掺入受主杂质其作用正好相反。掺入受主杂质其作用正好相反。 n对对P型半导体而言,电导率降低;型半导体而言,电导率降低; 费米能级费米能级EF和电子逸出功由和电子逸出功由 n 如果在导带和满带之间另有一个如果在导带和满带之间另有一个 能级并有一些电子填充其中,它能级并有一些电子填充其中,它 们很容易激发到导带而引起导电,们很容易激发到导带而引起导电, 那么这种半导体就称为那么这种半导体就称为N型半导型半导 体。中间的这个能级称为施主能体。中间的这个能级称为施主能 级。级。满带由于没有变化在导电中满带由于没有变

12、化在导电中 不起作用不起作用。实际情况中实际情况中N型半导型半导 体都是一些非计量的氧化物,在体都是一些非计量的氧化物,在 正常的能带结构中形成了施主能正常的能带结构中形成了施主能 级。级。 N型半导体(电子型半导体)能带结构示意图型半导体(电子型半导体)能带结构示意图 E施主能级 施主能级 (1) 正离子过量:正离子过量: ZnO中含有过量的中含有过量的Zn2+ 间隙原子eZn+可提供准自由电子,成为施主-n-型半导体 当当 V2O5中中O2-缺位出现缺位出现 时,由于晶体中要保持时,由于晶体中要保持 中性,中性,O2-缺位束缚电子形成缺位束缚电子形成 ,同时附近的,同时附近的V5+ 变成变

13、成V4+。通常称为。通常称为F中心。中心。F中心的束缚电子随温中心的束缚电子随温 度升高可以更多的变成准自由电子,这样它也成度升高可以更多的变成准自由电子,这样它也成 为一个施主来源。为一个施主来源。 (2) 负离子缺位负离子缺位 (3)高价离子同晶取代高价离子同晶取代 (4) 掺杂掺杂 P型半导体能带结构示意图型半导体能带结构示意图 容易接受电子的物质容易接受电子的物质, 禁带中产生受主能级禁带中产生受主能级 (Electron acceptor level); 受主能级能从价带接受电子,受主能级能从价带接受电子, 使价带中产生正空穴;使价带中产生正空穴; 导电性靠受主能级接受电子导电性靠受

14、主能级接受电子 产生的正空穴。产生的正空穴。 (1) 正离子缺位正离子缺位 n在在NiO中中Ni2+缺位,相当于减少了两个正电缺位,相当于减少了两个正电 荷。为保持电中性,在缺位附近,必定有荷。为保持电中性,在缺位附近,必定有 2-Ni2+个变成个变成Ni3+,这种离子可看作为这种离子可看作为Ni2+ 束缚住一个空穴,即束缚住一个空穴,即Ni3+Ni2+ ,这空这空 穴具有接受满带跃迁电子的能力,当温度穴具有接受满带跃迁电子的能力,当温度 升高,满带有电子跃迁时,就使满带造成升高,满带有电子跃迁时,就使满带造成 空穴。从而进行空穴导电。空穴。从而进行空穴导电。 (2) 低价正离子同晶取代低价正

15、离子同晶取代 若以若以Li 取代 取代NiO中的中的Ni2+,相当于少了一相当于少了一 个正电荷,为保持电荷平衡,个正电荷,为保持电荷平衡,Li+附近相附近相 应要有一个应要有一个Ni2+成为成为Ni3+。同样可以造成同样可以造成 受主能级而引起受主能级而引起P型导电。型导电。 (3) 掺杂掺杂 n在在NiO晶格中掺人电负性较大的原子时,例如晶格中掺人电负性较大的原子时,例如 F,它可以从它可以从Ni2+夺走一个电子成为夺走一个电子成为F-,同时产同时产 生一个生一个Ni3+,也造成了受主能级。也造成了受主能级。 n 总之,能在禁带中靠近满带处形成一个受主能总之,能在禁带中靠近满带处形成一个受

16、主能 级的固体就是级的固体就是P型半导体,它的导电机理是空型半导体,它的导电机理是空 穴导电。穴导电。 半导体催化剂的化学吸附本质 n 伏肯斯坦的催化作用电子理论把表面吸附的伏肯斯坦的催化作用电子理论把表面吸附的 反应物分子看成是半导体的施主或受主。反应物分子看成是半导体的施主或受主。 n半导体催化剂的化学吸附:半导体催化剂的化学吸附: n对对催化剂催化剂来说,决定于逸出功来说,决定于逸出功 的大小;的大小; n对对反应物分子反应物分子来说决定于电离势来说决定于电离势I的大小。的大小。 n由由 和和I的相对大小决定了电子转移的方向和限的相对大小决定了电子转移的方向和限 度度 。 (1) 当 I

17、 时 n电子从吸附物转移到半导体催化剂,吸附物呈电子从吸附物转移到半导体催化剂,吸附物呈 正电荷,粒子吸附在催化剂表面上。正电荷,粒子吸附在催化剂表面上。 n如果催化剂是如果催化剂是N型半导体其电导增加,而型半导体其电导增加,而P型型 半导体则电导减小。半导体则电导减小。 n这样情况下的吸附相当于增加了施主杂质,所这样情况下的吸附相当于增加了施主杂质,所 以无论以无论N型或型或P型半导体的逸出功都降低了。型半导体的逸出功都降低了。 (2) 当I时 n电子从半导体催化剂转移到吸附物,于是吸附电子从半导体催化剂转移到吸附物,于是吸附 物是带负电荷的粒子吸附在催化剂上,可以把物是带负电荷的粒子吸附在

18、催化剂上,可以把 吸附物视作为受主分子。吸附物视作为受主分子。 n对对N型半导体其电导减小,而型半导体其电导减小,而P型半导体则电型半导体则电 导增加,吸附作用相当于加了受主杂质从而增导增加,吸附作用相当于加了受主杂质从而增 加了逸出功。加了逸出功。 (3) 当I时 n半导体与吸附物之间无电子转移,于是半导体与吸附物之间无电子转移,于是 形成弱化学吸附,吸附粒子不带电。形成弱化学吸附,吸附粒子不带电。 n无论对无论对N型或型或P型半导体的电导率都无影型半导体的电导率都无影 响。响。 例子例子 n对于某些吸附物如对于某些吸附物如O2,由于电离势太大,无论由于电离势太大,无论 在哪种半导体上的化学

19、吸附总是形成负离子。在哪种半导体上的化学吸附总是形成负离子。 n反之有些吸附物,如反之有些吸附物,如CO、H2,由于电离势小由于电离势小 容易形成正离子。容易形成正离子。 半导体催化剂的催化活性半导体催化剂的催化活性 n催化剂的活性与反应物、催化剂表面局催化剂的活性与反应物、催化剂表面局 部原子形成的化学吸附键性质密切相关。部原子形成的化学吸附键性质密切相关。 n化学吸附键的形成和性质与多种因素有化学吸附键的形成和性质与多种因素有 关,对半导体催化剂而言,其关,对半导体催化剂而言,其导电性导电性是是 影响活性的主要因素之一。影响活性的主要因素之一。 例例1 2N2O2N2十十O2 n该反应在金

20、属氧化物该反应在金属氧化物(催化剂催化剂)上进行时:上进行时: nP型半导体氧化物型半导体氧化物(Cu2O,CoO,NiO,CuO, CdO,Cr2O3,Fe2O3等等)活性最高活性最高 n其次是绝缘体其次是绝缘体(MgO,CaO,Al2O3) nN型半导体氧化物型半导体氧化物(ZnO)最差;最差; n实验研究发现,在实验研究发现,在P型半导体上进行分解反应型半导体上进行分解反应 时,催化剂的电导率增加,而在时,催化剂的电导率增加,而在N型半导体上型半导体上 进行时电导下降。进行时电导下降。 反应的机理反应的机理 n据此可以推测:据此可以推测:N2O在表面上吸附时是受在表面上吸附时是受 主分子

21、。主分子。 n若若N2O分解分两步进行分解分两步进行 P P型半导体的活性较高的解释型半导体的活性较高的解释 n反应机理中的第一步是不可逆快反应,第二步反应机理中的第一步是不可逆快反应,第二步 是慢反应是慢反应rds。 n催化剂的电导率应该由第一步所引起,总的结催化剂的电导率应该由第一步所引起,总的结 果为果为N型电导下降,型电导下降,P型电导上升。这与实验型电导上升。这与实验 结果一致。反应速率由第二步控制,所以要加结果一致。反应速率由第二步控制,所以要加 快反应速率,必须提高催化剂接受电子的速率。快反应速率,必须提高催化剂接受电子的速率。 由于由于P型半导体的空穴能位比型半导体的空穴能位比

22、N型半导体的导型半导体的导 带能位更低,所以接受电子的速率快得多,这带能位更低,所以接受电子的速率快得多,这 就解释了就解释了P型半导体的活性较高的原因。型半导体的活性较高的原因。 氧化物表面的氧化物表面的M=O键性质键性质 与催化剂活性和选择性的关联与催化剂活性和选择性的关联 (1)晶格氧()晶格氧(O=)起催化作用)起催化作用 对于许多氧化物催化剂和许多催化反应,对于许多氧化物催化剂和许多催化反应, 当催化剂处于氧气流和烃气流的稳态下反当催化剂处于氧气流和烃气流的稳态下反 应,如果使应,如果使O2供应突然中断,催化反应仍供应突然中断,催化反应仍 将继续进行一段时间,以不变的选择性进将继续进

23、行一段时间,以不变的选择性进 行运转。若催化剂还原后,其活性下降;行运转。若催化剂还原后,其活性下降; 当供氧恢复,反应再次回到原来的稳态。当供氧恢复,反应再次回到原来的稳态。 这些实验事实说明,是晶格氧(这些实验事实说明,是晶格氧(O=)起催)起催 化作用,催化剂被还原。化作用,催化剂被还原。 MO + R Mn- +RO O2+ MO +R O2RO MOMOMOMOMOMO 非晶非晶 格氧格氧 起作起作 用用 晶格氧起晶格氧起 作用作用 还原还原 态态 V2O5 例子例子 :SO2+O2 SO3 SO3 + O2 (3)金属与氧的键合和)金属与氧的键合和M=O键类型键类型 1、氧的吸附、

24、氧的吸附 (1)氧总是以负离子的形式化学吸附)氧总是以负离子的形式化学吸附 氧的化学吸附,使氧的化学吸附,使n型氧化物电导下降,型氧化物电导下降,p 型氧化物电导增加。型氧化物电导增加。 在在NiO上吸附:上吸附: 2 Ni2+O22 (O- Ni3+) . (2)化学吸附的氧的存在形式:)化学吸附的氧的存在形式: 负离子态负离子态: O- *, O2- * 分子氧:分子氧:O2- * 不稳定的不稳定的O3- * O2- *, 与晶格氧相同与晶格氧相同 低温化学吸附,低温化学吸附, O- *, 高温化学吸附,高温化学吸附, O2- * 键合强度不同,热稳定性不同键合强度不同,热稳定性不同 O-

25、 *,最活泼,催化氧化活性高最活泼,催化氧化活性高 各种吸附的氧离子可以互相转化,各种吸附的氧离子可以互相转化, 最终可变成晶格氧最终可变成晶格氧O2- 例:丙烯腈的合成例:丙烯腈的合成 动力学实验表明:动力学实验表明: 反应速率与氧、氨浓度反应速率与氧、氨浓度 关联不大,而是与丙烯关联不大,而是与丙烯 的分压关联。的分压关联。 说明丙烯的化学吸附为说明丙烯的化学吸附为 反应的控制步骤。反应的控制步骤。 n丙烯吸附时向催化剂给出电子,属于丙烯吸附时向催化剂给出电子,属于P P型反型反 应,所以向催化剂中加入少量受主杂质可以应,所以向催化剂中加入少量受主杂质可以 提高丙烯的吸附速率提高丙烯的吸附

26、速率 可采用可采用Fe2O3Fe2O3部分替代部分替代Bi2O3Bi2O3 1 1)低价铁)低价铁Fe2+Fe2+对氧的吸附强于对氧的吸附强于Bi+Bi+ 2 2) Fe2O3Fe2O3的引入相当于引入的引入相当于引入 受主杂质受主杂质 复合金属氧化物催化剂的结构化学复合金属氧化物催化剂的结构化学 具有某一种特定的晶格结构的新化合的的生成,具有某一种特定的晶格结构的新化合的的生成, 需要满足需要满足3个方面的要求:个方面的要求: 控制化学计量关系的价态平衡;控制化学计量关系的价态平衡; 控制离子间大小相互取代的可能;控制离子间大小相互取代的可能; 修饰理想结构的配位情况变化,修饰理想结构的配位

27、情况变化, 这种理想结构是基于假定离子是刚性的,不可穿这种理想结构是基于假定离子是刚性的,不可穿 透的,非畸变的球体。实际复合金属氧化物催化剂的透的,非畸变的球体。实际复合金属氧化物催化剂的 结构,常是有晶格缺陷的,非化学计量的,且离子是结构,常是有晶格缺陷的,非化学计量的,且离子是 可变形的。可变形的。 n阳离子一般小于阴离子。晶格结构总是由配置阳离子一般小于阴离子。晶格结构总是由配置 于阳离子周围的阴离子数所决定。对于二元化于阳离子周围的阴离子数所决定。对于二元化 合物,配位数取决于阴阳离子的半径比,即合物,配位数取决于阴阳离子的半径比,即=r 阳阳/r阴。阴。 n最后还有考虑离子的极化。

28、因为极化作用能使最后还有考虑离子的极化。因为极化作用能使 围绕一个电子的电荷偏移,使其偏离理想化的围绕一个电子的电荷偏移,使其偏离理想化的 三维晶格结构,以致形成层状结构,最后变为三维晶格结构,以致形成层状结构,最后变为 分子晶体,变离子键为共价键。分子晶体,变离子键为共价键。 (1)尖晶石结构的催化性能)尖晶石结构的催化性能 其结构通式可写成其结构通式可写成AB2O4。 其单位晶胞含有其单位晶胞含有32个个O=负离子,组成立方负离子,组成立方 紧密堆积,对应于式紧密堆积,对应于式A8B16O32。正常晶格中,。正常晶格中, 8个个A原子各以原子各以4个氧原子以正四面体配位;个氧原子以正四面体

29、配位;16 个个B原子各以原子各以6个氧原子以正八面体配位。有个氧原子以正八面体配位。有 一些尖晶石结构的化合物具有反常的结构,一些尖晶石结构的化合物具有反常的结构, 其中其中B原子的一半占据正四面体位,另一半原子的一半占据正四面体位,另一半B 与所有的与所有的A占据正八面体位。还有占据正八面体位。还有A与与B完全完全 混乱分布的尖晶石型化合物。混乱分布的尖晶石型化合物。 (1)尖晶石结构的催化性能)尖晶石结构的催化性能 AB2O4尖晶石型氧化物:尖晶石型氧化物:8个负电荷可用个负电荷可用3种不种不 同方式的阳离子结合的电价平衡:(同方式的阳离子结合的电价平衡:(A2+2B3+) (A4+2B

30、2+) (A6+2B+) A2+离子可以是离子可以是Mg2+、Ca2+、Cr2+、 Mn2+、Fe2+、Co2+、Nr2+、Cu2+、 Zn2+、Cd2+、Hg2+或或Sn2+; B3+可以是可以是Al3+、Ga3+、In3+、Ti3+、V3+、 Cr3+、Mn3+、Fe3+、Co3+、Ni3+或或Rh3+。 (2)钙钛矿型结构的催化性能)钙钛矿型结构的催化性能 这是一类化合物,其晶格结构类似于矿物这是一类化合物,其晶格结构类似于矿物 CaTiO3,是可用通式,是可用通式ABX3表示的氧化物,表示的氧化物, 此处此处X是是O=离子。离子。A是一个大的阳离子,是一个大的阳离子,B是是 一个小的阳

31、离子。在高温下钙钛矿型结构的一个小的阳离子。在高温下钙钛矿型结构的 单位晶胞为正立方体,单位晶胞为正立方体,A位于晶胞的中心,位于晶胞的中心,B 位于正立方体顶点。此中位于正立方体顶点。此中A的配位数为的配位数为12 (O=),),B的配位数为的配位数为6(O=)。)。 基于电中性原理,阳离子的电荷之和应为基于电中性原理,阳离子的电荷之和应为+6,故其计,故其计 量要求为:量要求为: 1+5 = AIBVO3;2+4 = AIIBIVO3;3+3 = AIIIBIIIO3 具有这三种计量关系的钙钛矿型化合物有具有这三种计量关系的钙钛矿型化合物有300多种。多种。 有关钙钛矿型催化剂,原则如下:有关钙钛矿

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论