版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、概率论在经济中的应用摘要随着科学的发展,数学在生活中的应用越来越广.而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处.由于传统的数学教育属于知识传授型,不注意学生对数学方法产生的背景和思想的理解,使学生不善于利用所学到的数学知识、数学方法去分析、解决实际问题.加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验,这是当前课程改革的趋势.我们不仅要学好理论知识,更重要的是应用理论来实践.学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养.本文将先对概率论的起源和发展做简单介绍,再通过实例讨论概率论在在经济管理、经济损
2、失估测、投资风险估测、经济保险等几个经济管理估测问题中的应用. 关键字:概率论;解决问题;经济领域;应用ABSTRACTWith the development of science, mathematics application in daily life is becoming more and more popular. While the probability of mathematics as an important part, but also plays a more and more widely. Due to the traditional mathematics e
3、ducation belongs to knowledge imparting, do not pay attention to students mathematical method to produce the background and ideological understanding, so that students are not good at learn to use the knowledge of mathematics, mathematics method to analysis, solve practical problems. Strengthen math
4、ematics application, allowing students to use mathematical knowledge and mathematical thinking method to treat, analysis, solve real life problems, in math activities of life experience, which is the current tendency of curriculum reform. We should not only learn the theory knowledge, more important
5、 is the application of theory to practice. Learn the probability theory, and the application of probability theory to solve practical problems is we need a life quality. This paper will be the first probability theory origin and development to do a brief introduction, and then through the examples d
6、iscussed in probability theory in economic management, economic loss estimation, risk of investment estimation, economic insurance economic management estimate application.Keywords: Probability theory; problem solving; economy; application1. 引言 现实世界中形形色色的自然现象、社会现象大致可分为两类:一类是事先能确定其结果的现象,即确定性现象,如今天太阳必
7、然会落下去,同性电荷互相排斥等.另一类是事先不能确定其结果的现象为随机现象,这类现象的可能结果不会是一种,如同品种种子播种到肥力均匀的田地里,每粒种子是否发芽、掷一枚骰子,可能结果有6种等,这种随机现象是否有规律,便成为数学研究中的一个问题.概率论就是运用数学方法研究随机现象统计规律性的一门数学学科.概率, 简单地说,就是随机现象出现的可能性大小的一种度量.随着现代科学的发展,人们越来越多地认识到,一种科学只有成功地运用数学时,才算达到了真正完善的地步,而经济学也不例外.数学能为经济学提供特有的、严密的分析方法,经济学的发展需要数学,数学方法能使经济学研究理论的表述更清晰准确,逻辑推理更严密.
8、其作用体现在以下几个方面:一是数学方法为经济学理论的突破提供了科学的方法论;二是经济数学化表明人类对社会经济活动的认识和理解已经由定性到定量;三是数学方法的运用大大拓展和深化了经济学科;四是数学方法的运用有助于提高经济理论的实用性以及经济政策的科学性;五是运用数学方法对经济理论进行实证研究.当代西方经济学家认为,经济学研究的基本方法是从经济的实际出发建立数学经济模型,运用数学的理论和方法求解模型,进而形成经济理论.在实践中验证理论,并利用它来指导经济运作.经济学及其相关学科飞速发展,同时也促使多门数学分支在经济学中的应用不断加深.概率论研究随机现象的统计规律性;数理统计是研究样本数据的搜集、整
9、理、分析和推断的各种方法,这其中又包含两方面的内容:试验设计与统计推断.它在自然科学、工程技术、社会科学、军事和工农业生产中,尤其是在社会经济活动中有着广泛的应用.国外有人作过专门调查,在企业管理中,有三分之二以上的数据处理和决策分析的问题,可以通过统计手段来解决.3.概率论在经济管理估测中的应用3.1.在经济管理中的应用 在进行经济管理决策之前,往往存在不确定的随机因素,而所作的决策有一定风险.只有正确、科学的决策才能达到以最小的成本获得最大的安全保障的总目标,才能尽可能节约成本.概率虽不能直接提供决策建议,但是它能提供一些帮助决策者更好理解与问题有关风险和不确定性等方面信息.最终这些信息可
10、以帮助决策者制定出好的决策.下面从具体例子说明它在经济管理决策中的应用.例1某人有一笔资金,可投入三个项目:房产X、地产Y和商业Z,其收益和市场状态有关,若把未来市场划分为好、中、差三个等级,其发生的概率分别为p1=0.2,p2=0.7,p3=0.1,根据市场调研的情况可知不同等级状态下各种投资的年收益(万元),见表:优(P1=0.2)良(P2=0.6)差(P3=0.2)房产113-3地产64-1旅游102-2问:如何投资最为合理?解:考察数学期望:E(X)=110.2+30.7+(-3)0.1=4.0E(Y)=60.2+40.7+(-1)0.1=3.9E(Z)=100.2+20.7+(-2)
11、0.1=3.2根据数学期望可知,投资房产的平均收益最大,可能选择房产,但投资也要考虑风险,再对它们的方差进行观察:D(X)=(11-4)20.2+(3-4)20.7+(-3-4)20.1=15.4D(Y)=(6-3.9)20.2+(4-3.9)20.7+(-1-3.9)20.1=3.29D(Z)=(10-3.2)20.2+(2-3.2)20.7+(-2-3.2)20.1=12.96 因为方差愈大,则收益的波动大,从而风险也大,所以从方差看,投资房产的风险比投资地产的风险大得多,若收益与风险综合权衡,该投资者还是应该选择投资地产为好,虽然平均收益少0.1万元,但风险要小一半以上.通过以上实例说明
12、在进行经济管理决策之前,往往存在不确定的随机因素,从而所作的决策有一定的风险,只有正确、科学的决策才能达到以最小的成本获得最大的安全保障的总目标,才能尽可能节约成本.而期望和方差的数字特征含义可以帮助我们可以进行合理的选择,为我们的科学决策提供良好的依据,从而最优地实现目标.例2为了防止“甲型流感”病情的近一步蔓延,我校积极出台了一系列的预防措施.设我校可实际采用的四个预防措施为甲、乙、丙、丁,并且认为它们是相互独立的.经过多方论证,可得下表:预防措施甲乙丙丁P0.950.850.750.65费用(万元)9631请问:该投资者如何投资好?注:P表示单独采用甲、乙、丙、丁预防措施后此突发事件不发
13、生的概率.“费用”表示单独采用相应措施的花费.由于学校财力有限,仅能提供资金12万.问我们应采取怎样的预防措施会比较合理?(方案可单独采用也可联合采用)解:方案一:单独采用甲措施,费用9万.可使此事件不发生的概率最大为0.95.方案二:联合采用甲、丙、两种措施,费用12万.可使此事件不发生的概率最大为P=1-(1-0.95)(1-0.75)=0.9875方案三:联合采用乙、丙、丁三种措施,费用10万.可使此事件不发生的概率最大为P=1-(1-0.85)(1-0.75)(1-0.65)=0.986875 综合上述三种预防方案可知,在总费用不超过12万元的前提下,运用方案三比较合理.因为方案一虽然
14、所用花费最低,但此突发事件不发生的概率比较低,对防止“甲型流感”病情的近一步蔓延起不到很高系数的保证.为了起到对防止“甲型流感”病情的近一步蔓延有很高系数的保证,并且又可以最大限度的节省财力的情况下,方案三比较方案二要合理一些. 以最小的成本获得最大的安全保障的总目标,才能尽可能节约成本,是科学管理的一项重要内容.例3.某研究中心有同类型仪器300台,各仪器工作相互独立,而且发生故障的概率均为0.01,通常一台仪器的故障由一人即可排除.问:为保证仪器发生故障时,不能及时排除的概率小于0.01,至少要配备多少个维修工人?有两种维修方案,方案A:一人维修固定的20台仪器,方案B:三人维修固定的80
15、台仪器,哪种方案好?解:设X表示300台仪器中发生故障的台数,则XB(300,0.01),设b为需要配备的维修工人数,则应有PXb0.01,即Xb=1-PXb=由于n=300较大,p=0.01较小,根据泊松定理,可以用=np=3的泊松分布近似计算.则有PXb=0.01,查表得=0.9962,所以为达到要求至少需配备8名维修工人.解:设Y表示2 0台仪器中发生故障的台数,则YB(20,0.01).若在同一时刻发生故障的仪器数Y2,则一个工人不能维修,此概率为=PY2=1-PY=0-PY=1=0.0169.设Z表示80台仪器中发生故障的台数,则ZB(80,0.01).若在同一时刻发生故障的仪器数Z
16、4,则由三个工人共同负责保修时不能及时维修,此概率为=PZ4=1-PZ3=0.0091.由于,所以方案B比方案A好. 本问题涉及的是如何有效地使用人力问题,其中包括合理确定人员数和安排工作方式.例如为保证仪器发生故障时,不能及时排除的概率小于0.01,配备8人即可达到要求,若安排人员过多,就会造成人力资源的浪费.比较维修方案A和B的结果可以看出:虽然3人共同负责80台仪器,每个人的任务比1人负责20台仪器的任务大,但方案B的安排是合理的,工作质量不仅没有降低,反而提高了,能够保证仪器的正常运转.有效地使用人力、物力和财力,是科学管理的一项重要内容,概率论在这方面可以发挥很大的作用.3.2 在投
17、资风险估测中的应用 投资者冒险投资的报酬超过无风险所获得的报酬的部分就是投资风险价值.投资风险程度和投资风险价值成正比关系.投资风险程度就是指我们现金(广义上的)的实际流量和预期流量之间的差异程度.现金的流入与流出的差额就是现金的净流量.现金的流入是指所投资的项目在周期内的流入量,主要是指营业收入、其他收入.现金的流出是指所投资的项目在周期内为该项目所支付的现金量包括投资及营业成本等. 在投资环境日趋复杂的现代社会,几乎所有的投资都是在风险和不确定情况下进行的,一般地说,投资者都讨厌风险并力求回避风险.由概率知识对风险系统进行分析可以直接获得风险决策,下面以例说明一下它在投资风险中的应用.例1
18、设某公司拥有三支获利是独立的股票,且三种股票获利的概率分别为0.8,0.6,0.5 .求(1)任两种股票至少有一种获利的概率;(2)三种股票至少有一种股票获利的概率.解:设A,B,C 分别表示三种股票获利, 依题意A,B,C 相互独立.则由乘法公式与加法公式:(1)任两种股票至少有一种获利等价于三种股票至少有两种获利的概率.P(1)=P(AB+AC+BC)=P(AB)+P(AC)+P(BC)-2P(ABC)=P(A)P(B)+P(A)P(C)+P(B)P(C)-2P(A)P(B)P(C)=0.7(2)三种股票至少有一种股票获利的概率P(2)=P(A+B+C)=P(A)+P(B)+P(C)-P(
19、AB)-P(AC)-P(BC)+P(ABC)=0.96 计算结果表明 投资于多只股票获利的概率大于投资于单只股票获利的概率这就是投资决策中分散风险的一种策略,前些年,股票市场的异常火爆让许多的投资者都对之产生了瑰丽的幻想和期望,即使面临这几年的股票市场低潮,仍然有许多人寄希望于股市让自己的资产迅速增值,因而将自己的资产集中投资在某一个股票.其实,这些投资者都违反了投资最重要的原则之一,就是分散投资原则.以股市为例,组合可以包括公用股、地产股、工业股、银行股等,目的是建立一个相关系数较低的投资组合,从而减低风险;另外,当投资的股票数量增加时,组合的风险相对降低.单而言如果将资金平均分配在50只股
20、票上,就算其中一家公司不幸倒闭,损失亦只占投资总额之2%,比单独投资在这家要倒闭的公司而蒙受的损失少得多.用一句简单俗语,就是把鸡蛋分散地放在不同的篮子里. 3.3. 在生产决策中的应用 决策的方法与所选的决策准则值直接相关,期望值准则是风险决策中最常用的准则以期望值为准则的基本方法是:首先根据付酬表,计算各行动方案的期望值,最后从各期望值选择期望收益最大(或期望损益最小)的方案为最优方案例1.假如已知某厂预计日产量的机会亏损的未来各种需求量发生的概率试就此资料进行期望机会亏损决策生产量(箱)后悔值(元)概率状态市场需求量(箱)1001101201300.20.40.30.1100050010
21、0015001103000500100012060030005001309006003000某厂预计日产量的机会亏损表解:设为日产100箱;为日产110箱;为日产120箱;为日产130箱.则有:=0.200.45000.310000.11500=650( 箱)=0.23000.400.35000.11000=320( 箱)=0.26000.43000.300.1500=290( 箱)=0.29000.46000.33000.10=510( 箱)min=290于是选择日产120箱的方案 对于同一资料根据期望损益值进行抉择的结果和根据期望机会亏损值的抉择结果是一致的从上例可以发现即期望值收益与期望
22、机会亏损互余即期望收益越大时,期望机会亏损值必小这就是说一个方案若期望获利最大,那么执行该方案后悔值必然最小因此,按两种法则择优的结果必定相同3.4 在估测最大经济利润问题中的应用 如何获得最大利润是商界永远追求的目标,随机变量函数期望的应用为此问题的解决提供了新的思路.例1某一商场经销的某种商品,每周的需求量X在20至40范围内等可能取值,该商品的进货量也在20至40范围内等可能取值(每周只在周日前进货物一次)商场每销售一单位商品可获利600元,若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从外单位调拨,此时一单位商品可获利300元.试测算进货量多少时,商场可获得最佳利
23、润?并求出最大利润的期望值.分析:由于该商品的需求量(销售量)X是一个连续型随机变量,它在区间20,40上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数.本问题涉及的最佳利润只能是利润的数学期望即平均利润的最大值.因此,本问题的解算过程是,先确定Y与X的函数关系,再求出Y的期望E(Y),最后利用极值方法求出的极大值点及最大值.解:设每周的进货量为a,则: 实现利润最大化是商界的最终目标,影响的因素很多,主要有两个方面,一是扩大产品收入,利润是收入创造的,没有收入上量的保障,利润是无从谈起的.二是严格控制成本和费用支出,在利润增加的同时,成本和费用的支出的越少,利
24、润就越大.这从会计的要素等式:收入-费用=利润就能明白. 例2 某公司经销某种原料,根据历史资料:这种原料的市场需求量X(单位:吨)服从(300,500)上的均匀分布,每售出1吨该原料,公司可获利1.5千元;若积压1吨,则公司损失0.5千元,问公司应该组织多少货源,可使期望的利润最大?分析:此问题的解决先是建立利润与需求量的函数,然后求利润的期望,从而得到利润关于货源的函数,最后利用求极值的方法得到答案.解:设公司组织该货源a吨,则显然应该有300 a 500,又记Y为在a吨货源的条件下的利润,则利润为需求量的函数,即Y=g(X),由题设条件知:当X a时,则此a吨货源全部售出,共获1.5a;
25、X50时,可以 用中心极限定理计算p(ab)的近似值)要使保险公司亏本,必须满足 1210000-1000120本题中E()=np,D()=npq,化为标准正态分布:(x-np/)P(120) = 1-p(0120) 1-(120-100000.006/ )-(0-100000.006/ )=1-2(7.722)-1=2-2=0即公司会亏本的概率为0.2)当保险公司一年的利润不少于40000、60000、80000元时,必须满足:1210000-1000 40000(或60000或80000) 80(或60或40)p(080)(80-100000.006/ )-(0-100000.006/ )=(2.59)+ (7.77)-10.9951p(060)(60-100000.006/ )-(0-100000.006/ )=(0)+(7.77)-10.5p(040)(40-100000.006/ )-(0-100000.006/ )=(-2.59)- (-7.77)=(7.77)- (2.59)0.0048 即保险公司一年的利润不少于40000元、60000元、80000元的概率分别为0.9951,0.5,0.00
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财政部货物类合同管理规定
- 钢琴启蒙老师年终总结
- 煤气检查和使用安全:预防火灾和中毒事故
- 《色彩心理学》课件
- 《船用卸扣》规范
- 进出口业务知识培训
- 抗蠕虫药相关行业投资规划报告范本
- 骨代谢异常的生物化学诊断课件
- 铁路安全警示教育室
- 防治结核病的内容讲解
- 中医体质与养生
- 船用火灾报警控制器使用说明书20230801v11
- 工程建设中地形图的应用(DOC)
- 湘教版八年级上册地理第二节工业课件(37张)
- 以德国VMT公司的盾构机为例浅谈盾构机姿态的控制方法
- 2022年关税理论
- [河北]公路工程施工标准化实施细则(工地建设篇87页)
- 教科版四年级科学上册全册复习教学设计及知识点整理
- 气管插管操作规范(完整版)课件
- 电磁波法探测技术—地质雷达综述
- 齐鲁工业大学2022年上期末药物分离工程期末考试复习资料
评论
0/150
提交评论