平行线的证明试题总集含答案78页_第1页
平行线的证明试题总集含答案78页_第2页
平行线的证明试题总集含答案78页_第3页
平行线的证明试题总集含答案78页_第4页
平行线的证明试题总集含答案78页_第5页
已阅读5页,还剩73页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、平行线的证明单元测试题一、 填空题1在ABC中,C=2(A+B),则C=_.2如图,ABCD,直线EF分别交AB、CD于E、F,EG平分BEF,若1=72 ,则2= ;3在ABC中,BAC90,ADBC于D,则B与DAC的大小关系是_4写出“同位角相等,两直线平行”的题设为_,结论为_ CABDEECDBA1324第5题第6题第7题5如图,已知ABCD,BCDE,那么B +D =_.6如图,127,295,338,则4_7如图,写出两个能推出直线ABCD的条件_.8满足一个外角等于和它相邻的一个内角的ABC是_二、 选择题9下列语句是命题的是 【 】(A)延长线段AB (B)你吃过午饭了吗?

2、(C)直角都相等 (D)连接A,B两点10如图,已知12180,375,第10题那么4的度数是 【 】(A)75 (B)45 (C)105 (D)13511 以下四个例子中,不能作为反例说明“一个角的余角大于这个角” 是假命题是 【 】(A)设这个角是30,它的余角是60,但3060(B)设这个角是45,它的余角是45,但4545(C)设这个角是60,它的余角是30,但3060(D)设这个角是50,它的余角是40,但40A;(2)试判断:在ABC外又和点A在直线l同侧,是否存在一点Q,使BQCA?试证明你的结论19、如图,已知B=142,BFE=38,EFD=40,D=140,求证: ABCD

3、 20、已知:如图,BAF、CBD、ACE是ABC的三个外角求证:BAF+CBD+ACE=36021、如图,已知BE、CE分别是ABC的内角、外角的平分线,A=40,求E的度数22、已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论。(1)ABEF,BCDE.1与2的关系是:_证明:(2)ABEF,BCDE. 1与2的关系是:_证明:(3)经过上述证明,我们可以得到一个真命题:如果_,那么_.(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30,则这两个角分别是多少度第二章 平行线与相交线【巩固基础训练】题型发散 1.选择题,把正确答案的代号填入

4、题中括号内(1)下列命题中,正确的是( )(A)有公共顶点,且方向相反的两个角是对顶角(B)有公共点,且又相等的角是对顶角(C)两条直线相交所成的角是对顶角(D)角的两边互为反向延长线的两个角是对顶角(2)下列命题中,是假命题的为( )(A)邻补角的平分线互相垂直(B)平行于同一直线的两条直线互相平行(C)垂直于同一直线的两条直线互相垂直(D)平行线的一组内错角的平分线互相平行(3)如果一个角的两边分别平行于另一个角的两边,那么这两个角( ) (A)相等 (B)互补(C)相等或互补 (D)以上结论都不对(4)已知下列命题内错角相等;相等的角是对顶角;互补的两个角是一定是一个为锐角,另一个为钝角

5、;同旁内角互补其中正确命题的个数为( )(A)0 (B)1 (C)2 (D)3(5)两条直线被第三条直线所截,则( )(A)同位角的邻补角一定相等(B)内错角的对顶角一定相等(C)同位角一定不相等(D)两对同旁内角的和等于一个周角(6)下列4个命题相等的角是对顶角;同位角相等;如果一个角的两边分别平行于另一个角的两边,则两个角一定相等;两点之间的线段就是这两点间的距离其中正确的命题有( )(A)0个 (B)1个 (C)2个 (D)3个(7)下列条件能得二线互相垂直的个数有( )一条直线与平行线中的一条直线垂直;邻补角的两条平分线;平行线的同旁内角的平分线;同时垂直于第三条直线的两条直线(A)4

6、个 (B)3个 (C)2个 (D)1个(8)因为AB/CD,CD/EF,所以AB/EF,这个推理的根据是( )(A)平行线的定义(B)同时平行于第三条直线的两条直线互相平行(C)等量代换(D)同位角相等,两直线平行(9)如图2-55如果AFE+FED=,那么( )(A)AC/DE (B)AB/FE(C)EDAB (D)EFAC(10)下列条件中,位置关系互相垂直的是( )对顶角的平分线;邻补角的平分线;平行线的同位角的平分线;平行线的内错角的平分线;平行线的同旁内角的平分线(A) (B) (C) (D)2.填空题(1)把命题“在同一平面内没有公共点的两条直线平行”写成“如果,那么”形式为_(2

7、)直线外一点与直线上各点连结的所有线段中,_最短(3)两条平行线被第三条直线所截,同旁内角的比为2:7,则这两个角的度数为_.(4)如果A为B的邻补角,那么A的平分线与B的平分线必_.(5)如图2-56AB/CD(已知),ABC=_( )_=_(两直线平行,内错角相等),BCD+_=( )3=4(已知),_( )FAD=FBC(已知),_( )(6)如图2-57,直线AB,CD,EF被直线GH所截,1=,2=,3=求证:AB/CD证明:1=,3=(已知),1=3( ) _( )2=,3=( ),_+_=_,_/_,AB/CD( )(7)如图2-58,直线DE,AC被第三条直线BA所截,则1和2

8、是_,如果1=2,则_/_,其理由是( ) 3和4是直线_、_,被直线_所截,因此_/_3_4,其理由是( )(8)如图2-59,已知AB/CD,BE平分ABC,CE平分BCD,求证1+2=证明: BE平分ABC(已知),2=_( )同理1=_,1+2=_( )又AB/CD(已知),ABC+BCD=_( )1+2=( )(9)如图2-60,E、F、G分别是AB、AC、BC上一点如果B=FGC,则_/_,其理由是( )BEG=EGF,则_/_,其理由是( )如果AEG+EAF=,则_/_,其理由是( )(10)如图2-61,已知AB/CD,AB/DE,求证:B+D=BCF+DCF证明: AB/C

9、F(已知),_=_(两直线平行,内错角相等)AB/CF,AB/DE(已知),CF/DE( )_=_( )B+D=BCF+DCF(等式性质)3计算题,(1)如图2-62,AB、AE是两条射线,2+3+4=1+2+5=,求1+2+3的度数(2)如图2-63,已知AB/CD,B=,EF平分BEC,EGEF求BEG和DEG的度数(3)如图2-64,已知DB/FG/EC,ABD=,ACE=,AP是BAC的平分线求PAG的度数(4)如图2-65,已知CD是ACB的平分线,ACB=,B=,DE/BC,求EDC和BDC的度数纵横发散1如图2-66,已知C=D,DB/ECAC与DF平行吗?试说明你的理由2如图2

10、-67,已知1=2,求3+4的度数解法发散 1如图2-68,已知AB/CD,EFAB,MNCD求证:EF/MN(用两种方法说明理由)2如图2-69,、,是直线,1= a与b平行吗?简述你的理由(用三种方法,简述你的理由)变更命题发散如图2-70,AB/CD,BAE=,ECD=,EF平分AEC,求AEF的度数如图2-71,已知AB/CD,BAE=,DCE=,EF、EG三等分AEC(1)求AEF的度数;(2)EF/AB吗?为什么?3如图2-72,已知1=,2=80,3=,那么4是多少度?4如图2-73,AB、CD、EF、MN构成的角中,已知1=2=3,问图中有平行线吗?如果有,把彼此平行的直线找出

11、来,并说明其中平行的理由5如图2-74,已知1+2=,3=求4的度数?6如图2-75,已知/m,求x,y的度数7如图2-76,直线分别和直线相交,1与3互余,2与3的余角互补,4=求3的度数转化发散 1如图2-77,已知AEF=B,FEC=GHB,GH垂直于AB,G为垂足,试问CE,能否垂直AB,为什么?2如图2-78,已知ADE=B,FGAB,EDC=GFB,试问CD与AB垂直吗?简述你的理由分解发散 发散题 如图2-79,AB/CD, 1=2,3=4,求EMF的度数综合发散1证明:两条平行线被三条直线所截的一对同旁内角的角平分线互相垂直2求证:两条直线被第三条直线所截,若一组内错角的角平分

12、线互相平行,则这两条直线也相互平行3在ABC中,CD平分ACB,DE/AC交BC于E,EF/CD交AB于F,求证:EF平分DEB4线段AB被分成2:3:4三部分,已知第一和第三两倍分的中点间的距离是5.4cm,求AB的长5已知:如图2-80,AB/CD,ADDB,求证1与A互余【提高能力测试】题型发散选择题,把正确答案的代号填入括号内(1)如图2-81,能与构成同旁内角的角有( )(A)1个 (B)2个(C)5个 (D)4个(2)如果两个角的两条边分别平行,而其中一个角比另一个角的4倍少30,那么这两个角是( )(A) (B)都是(C)或, (D)以上答案都不对(3)如图2-82,AB/CD,

13、MP/AB,MN平分 AMDA=40,D=30,则NMP等于( )(A) (B) (C) (D)(4)如图2-83,已知:1=2,3=4,求证:AC/DF,BC/EF证明: 1=2(已知),(A)AC/DF(同位角相等,两直线平行)3=5(内错角相等,两直线平行)(B)3=4(已知)(C)5=4(等量代换)(D)BC/EF(内错角相等,两直线平行)则理由填错的是( )(5)如图2-84,已知AB/CD,HL/FG,EFCD,1=,那么,EHL的度数为( )(A) (B)(C) (D)(6)直线,D、A是上的任意两点,且A在D的右侧,E、B是上任意两点,且B在E的右侧,C是和之间的某一点,连结C

14、A和CB,则( )(A)ACB=DAC+CBE(B)DAC+ACB+CBE=(C)(A)和(B)的结论都不可能(D)(A)和(B)的结论有都可能(7)如图2-85,如果1=2,那么( )(A)AB/CD(内错角相等,两直线平行)(B)AD/BC(内错角相等,两直线平行)(C)AB/CD(两直线平行,内错角相等)(D)AD/BC(两直线平行,内错角相等)(8)如图2-86,AB/EF,设C=,那么x、y和z的关系是( )(A)(B)(C)(D)(9)如图2-87,1:2:3=2:3:4,EF/BC,DF/EB,则A:B:C=( )(A)2:3:4 (B)3:2:4(C)4:3:2 (D)4:2:

15、3(10)如图2-88,已知,AB/CD/EF,BC/AD,AC平分BAD,那么图中与AGE相等的角有( )(A)5个 (B)4个 (C)3个 (D)2个2填空题(1)三条相交直线交于一点得6个角,每隔1个角的3个角的和是_度(2)A和B互为邻补角,A:B=9:6,则A=_,B=_.(3)如果1和2互补,2比1大,则1=_,2_.(4)如图2-89,已知AB/CD,EF分别截AB、CD于G、H两点,GM平分AGE,HN平分CHG,求证:GM/HN证明: _/_( ) ,AGE=CHG( )又GM平分AGE( ) 1=_( )_平分_( ), 2=_( ),则GM/HN( )(5)如图2-90,

16、已知,1=,2=,则3=_,4=_.(6)如图2-91,1=2,3=2, 1=3( )1=3, 1+2=3+2( ),即BOD=AOC,AOC=BODAOC2=BOD2( ),即3=1(7)如图2-92,已知,AB、AC、DE都是直线,2=3,求证:1=4证明:AB、AC、DE都是直线( ),1=2,3=4( )2=3( ),1=4( )(8)如图2-93,OBC=OCB,OB平分ABC,OC平分ACB,求证:ABC=ACB证明:OB平分ABC( ),ABC=2OBC( )OC平分ACB( )ABC=2OCB( )OBC=OCB( ),2OBC=2OCB( ),即ABC=ACB,(9)如图2-

17、94,ABBC,1=2,3=4,求证CDBC,证明:1=2,3=4( )1+3=2+4( ),即ABC=BCDABBC( ) ABC=( )BCD=( ), CDBC( )(10)如图2-95,1=3,AC平分DAB,求证:AB/CD证明:AC平分DAB( ),1=3( )1=2( ),3=2( ),AB/CD( )3计算题(1)如图2-96,已知,1=,2=,求x和y 的度数(2)如图2-97,已知AMF=BNG=,CMA=求MPN的度数(3)如图2-98,已知B=,过ABC内一点P作PE/AB,PF/BC,PHAB求FPH的度数(4)如图2-99,已知AE/BD,1=32,2=求C(5)如

18、图2-100,OBOA,直线CD过O点,AOC=求DOB的度数4作图题已知,(),求作=解法发散 1已知AB/CD,试问B+BED+D=(用两种以上方法判断)2如图2-101,已知BED=ABE+CDE,那么AB/CD吗?为什么?(用四种方法判断)变更命题发散1如图2-102,在折线ABCDEFG中,已知1=2=3=4=5,延长AB,GF交于点M那么,AMG=3,为什么?1如图2-103,已知AB/CD,1=2试问BEF=EFC吗?为什么?(提示:作辅助线BC)分解发散如图2-104,AB/CD,在直线,AB和CD上分别任取一点E、F(1)如图2-104,已知有一定点P在AB、CD之间,试问E

19、PF=AEP+CFP吗?为什么?(2)如图2-105,如果AB、CD的外部有一定点P,试问EPF=CFPAEP吗?为什么?(3)如图2-106,AB/CD,BEFGD是折线,那么B+F+D=E+G吗?简述你的理由转化发散1判断互为补角的两个角中,较小角的余角等于这两个互为补角的差的一半2已知点C在线段AB的延长线上,AB=24cm,BC=AB,E是AC的中点,D是AB的中点,求DE的长迁移发散平面上有10条直线,其中任何两条都不平行,而且任何三条都不经过同一点,这10条直线最多分平面为几个区域?综合发散1线段AB=14cm,C是AB上的一点,BC=8cm,又D是AC上一点,AD:DC=1:2,

20、E是CB的中点,求线段DE的长2如图2-107,已知1=2=3,GFA=,ACB=,AQ平分FAC,求HAQ的度数3如图2-108,已知1=2,C=D,试问A=F吗?为什么?4如图2-109,已知ADBC,EFBC,4=C,那么1=2谈谈你的理由参考答案【巩固基础训练】题型发散1(1)(D) (2)(C) (3)(C) (4)(A) (5)(D) (6)(A) (7)(B) (8)(B) (9)(A) (10)(D)2(1)如果在同一平面内两条直线没有公共点,那么这两条直线平行(2)垂线段(3)40、140(4)垂直(5)ABC=DCE,(两直线平行,同位角相等),1=2,BCD+ABC(两直

21、线平行,同旁内角互补)ADBC,(内错角相等,两直线平行)ADBC,(同位角相等,两直线平行)(6)(等量代换),ABEF,(内错角相等,两直线平行),(已知),2+3=180,CDEF(如两条直线都和第三条直线平行,那么这两条直线也互相平行)(7)1和2是同位角1=2,则DEAC(同位角相等,两直线平行);直线DE、AC被直线BC所截,因此DEAC,3=4(两直线平行,同位角相等)(8)(角平分线定义) 同理 (等式性质)又ABCD(已知),ABC+BCD=180(两直线平行,同旁内角互补),1+2=90(等量代换)(9)如果B=FGC,则ABFG,因为同位角相等,两直线平行如果BEG=EG

22、F,则ABFG,因为内错角相等,两直线平行如果AEC+EAF=180,则EGAC,因为同旁内角互补,两直线平行(10)B=BCFCFDE(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)D=DCF(两直线平行,内错角相等)3(1)AD、BC与AB相交,DAB与4是同旁内角,2+3+4=DAB+4=180ADBC(同旁内角互补,两直线平行)同理,1+2+5+EAC+5=180,AEBCAD、AE在同条直线上(经过直线外一点,有条而且只有一条直线和这条直线平行)则AE、AD在A点处形成一个平角,故1+2+3=180(2)50,50 (3)12 (4)25,85纵横发散1BDEC(已知),

23、DBC+C=180(两直线平行,同旁内角互补)又C=D(已知),DBC+D=180(等量代换)故ACDF(同旁内角互补,两直线平行)21=2(已知),ABCD(同位角相等,两直线平行),BMN+DNM=180(两直线平行,同旁内角互补)3+4=(180-BMN)+(180-DNM)=360-180=180(等量代换)解法发散1(1)通过同位角相等,判断两直线平行(2)通过两条直线都和第三条直线垂直来判断这两条直线平行解法1 如图2-1,EFAB(已知),1=90(垂直的定义)同理,3=90,1=3又ABCD(已知),1=2(两条直线平行,同位角相等),2=3(等量代换)EFMN(同位角相等,两

24、直线平行)解法2 EFAB(已知),1=90(垂直的定义)又ABCD(已知),1=2=90(两直线平行,同位角相等),EFCD(垂直的定义),又MNCD(已知),EFMN(如果两条直线都和第三条直线垂直,那么这两条直线平行)2解法1 2=4,1=21=4ab(同位角相等,两直线平行)解法22=4,1=3(对顶角相等)又1=2,3=4ab(内错角相等,两直线平行)解法3 1+5=180(平角定义),1=2,2+5=180,又2=4(对顶角相等),4+5=180ab(同旁内角互补,两直线平行)变更命题发散1512(1)30;(2)平行,根据内错角相等,两直线平行3854因为1和4是对顶角,所以1=

25、4,又因为1=2=3,所以4=2,4=3直线AB,CD被EF所截,2和4是同位角,且4=2,所以,ABCD同理,由4=3,可推知EFMN51=6,2=7(对顶角相等),又1+2=180(已知),6+7=180(等量代换)ABCD(同旁内角互补,两直线平行),4=5(两直线平行,内错角相等)而3+5=180(平角的定义),3=95(已知),5=85(等式性质),故4=85(等量代换)6x=125,y=727由题意,1是3的余角,而2与3余角互补,故1+2=180,于是,所以3=5=180-4=180-115=65转化发散1分析 把判断两条直线垂直问题转化为判断两条直线平行问题理由如下:AEF=B

26、,EFBC,FEC=1又FEC=GHB,GHB=1,GHCEGHAB,CEAB2分析 本题将证明两条直线垂直的问题转化为证明两条直线平行的问题理由如下:ADE=B(已知),DEBC(同位角相等,两直线平行),BCD=EDC(两直线平行,内错角相等)又EDC=GFB(已知),BCD=GFB(等量代换),FGCD(同位角相等,两直线平行)又FGAB(已知),故CDAB(如果一条直线和两条平行线中的一条垂直,那么,这条直线也和另一条垂直)分解发散如图2-2,过M作MNAB(过直线外一点有且只有一条直线平行于已知直线),ABCD(已知),MNCD(平行于同一条直线的两条直线平行)2=EMN(两直线平行

27、,内错角相等)4=NMF而1+2+3+4=180,1=2,3=4,EMF=90综合发散1已知:如图2-3,ABCD,BMN与MND是一对同旁内角,MG,NG分别是两个角的角平分线求证:MGNG证明:ABCD(已知),BMN+MND=180(两直线平行,同旁内角互补)又MG、NG为角平分线(已知),(角平分线定义),MGN=90MGNG2已知1=2,3=4,EMFN,求证:ABCD如图2-4,MEFN,2=3(两直线平行,内错角相等)又1=2,3=4,1=4,1+2=3+4即AEF=DFE故ABCD(内错角相等,两直线平行)348.1cm5解ABCD(已知),1=2(两直线平行,内错角相等),A

28、+ADC=180(两直线平行,同旁内角互补),即A+ADB+2=180ADDB(已知),ADB=90(垂直的定义),A+2=90(等量减等量,差相等),A+1=90(等量代换),1与A互余(互余的定义)【提高能力测试】题型发散1(1)(C) (2)(D) (3)(C) (4)(A) (5)(C)(6)(A) (7)(A) (8)(C) (9)(B) (10)(A)2(1)180(2)108,72(3)85,95(4)ABCD(已知),两直线平行,同位角相等(已知)(角平分线定义)HN平分CHE(已知),(角平分线定义);1=2(等量代换),同位角相等,两直线平行(5)3=95,4=85(6)(

29、等量代换)(等量之和相等)(等量之差相等)(7)(已知),(对顶角相等),(已知),(等量代换)(8)(已知),(角平分线定义)(已知),(角平分线定义)(已知),(等量的同倍量相等)(9)(已知),(等量之和相等)(已知),(垂线定义)(等量代换),(垂线定义)(10)(已知)(角平分线定义)(已知),(等量代换)(内错角相等,两直线平行)3(1)80,100(2)50(3)30(4)28(5)OBOA(已知),AOB=90(垂直的定义)又AOC=20(已知),BOC=AOB-AOC=90-20=70(等式性质)又DOC是一直线(已知),DOB+BOC=180(平角的定义),DOB=110(

30、等式性质)4略解法发散1解法1 如图2-5,从E点作EFABB+BEF=180(两直线平行,同旁内角互补)又ABCD(已知),EFCD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),FED+D=180(两直线平行,同旁内角互补),B+BEF+FED+D=360,即B+BED+D=360解法2 如图2-6,从E点作EFAB,则1=B(两直线平行,内错角相等)又ABCD(已知),EFCD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),2=D(两直线平行,内错角相等)1+BED+2=360(周角的定义),B+BED+D=360(等量代换)2分析 关键是找到“第三条直线”把

31、原两条直线AB,CD联系起来解法1 如图2-7,延长BE交CD于F有BED=3+2,BED=1+2,1+2=3+2即1=3,从而ABCD(内错角相等,两直线平行)解法2 如图2-8,过E点作EF,使FED=CDE,则EFCD又BED=ABE+CDE,FEB=ABE因而EFABABCD(AB,CD都平行于EF)解法3、解法4可依据图2-9、图2-10,读者可自行判断变更命题发散1判断理由如下:1=2(已知),AMCD(内错角相等,两直线平行)同理,4=5,GMDE,AMG=3(如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补)2判断理由如下:连结BCABCD(已知),ABC=BC

32、D(两直线平行,内错角相等)又1=2,EBC=FCB(等量之差相等),EBCF(内错角相等,两直线平行),BEF=EFC(两直线平行,内错角相等)分解发散(1)提示:过P作PQAB,把EPF分割成两部分EPQ、QPF,利用平行线内错角相等判断(2)提示:先求CFP的等角1,过Q点作QGPE,把1分割成两部分,再利用平行线内错相等证明EPF=1-AEP,又1=CFP,最后证得结论:EPF=CFP-AEP(3)提示:过E、F、G作AB的平行线转化发散1提示:考虑互补的两角有一条边互为反向延长线MN,过角的顶点作MN的垂线,只须证互补两角中的大角减小角的差等于小角的余角的2倍2如图2-11,又E是线

33、段AC的中点,同理,故DE=AE-AD=16.5-12=4.5(cm)迁移发散一条直线将平面分成2个区域,加上第二条直线,区域数增加2,加上第三条直线,区域数又增加3,加上第10条直线,区域数又增加1010条直线,按已知条件,将平面分成的区域数为n则n=2+2+3+4+10=1+(1+2+3+4+10)=56综合发散18cm2123提示:先判断DBEC,再判断DFAC4本题判断如下:ADBC(已知),EFBC(已知),ADEF(垂直于同一条直线的两直线平行),1=3(两直线平行,同位角相等)又4=C(已知)ACGD(同位角相等,两直线平行)2=3(两直线平行,内错角相等)1=2(等量代换)八年

34、级数学上册第七单元平行线的证明测试题(考试时间120分钟 试卷满分100分)姓名: 班级: 得分: 一、精心选择(30) 1.下列图形中,由,能得到的是( )ACBD12ACBD12AB12ACBDCBDCAD12 1100500L1L2 2.如图,直线L1L2 ,则为( ). A.1500 B.1400 C.1300 D.1200 3.下列命题:不相交的两条直线平行;梯形的两底互相平行;同垂直于一条直线的两直线平行;(第2题图)同旁内角相等,两直线平行.其中真命题有( )A.1个 B.2个 C.3个 D.4个 4.下列命题: 两个连续整数的乘积是偶数;带有负号的数是负数; 乘积是1的两个数互

35、为倒数;绝对值相等的两个数互为相反数.其中假命题有( )ABCDEA.1个 B.2个 C.3个 D.4个 5.如图,ABCD,那么BAE+AEC+ECD =( )A.1800 B.2700 C.3600 D.54006.下列说法中,正确的是( )A经过证明为正确的真命题叫公理 B假命题不是命题C要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可D要证明一个命题是真命题,只要举一个例子,说明它正确即可.7.下列选项中,真命题是( ).Aab,ac,则b=c B相等的角为对顶角C过直线l外一点,有且只有一条直线与直线l平行 D三角形中至少有一个钝角8下列命题

36、中,是假命题的是( )A互补的两个角不能都是锐角 B如果两个角相等,那么这两个角是对顶角C乘积为1的两个数互为倒数 D全等三角形的对应角相等,对应边相等.9下列命题中,真命题是( )A任何数的绝对值都是正数 B任何数的零次幂都等于1C互为倒数的两个数的和为零 D在数轴上表示的两个数,右边的数比左边的数大10.如图所示,下列条件中,能判断ABCD的是( )毛A.BAD=BCD B.1=2; C.3=4 D.BAC=ACD 二、细心填空(15) 11.观察如图所示的三棱柱. (1)用符号表示下列线段的位置关系: AC CC1 ,BC B1C1 ;ABCDEFA1ABCB1C1ACB(第13题图)

37、(第12题图)(第11题图) 12.如图三角形ABC中,C = 900 ,AC=23,BC=32,把AC、BC、AB的大小关系用“”号连接: . 13.如图,直线AB、CD相交于点E ,DFAB,若AEC=1000,则D的度数等于 .ABCDEF(第14题图)1(第15题图) 14.如图,把长方形ABCD沿EF对折,若1=500,则AEF的度数等于 .15.图中有 对对顶角. 三.用心解答(55)ADCB 16.如图,ABCD,ADBC,AB.求A、B、C、D的度数. 17.如图,ABCD,直线EF交AB、CD于点G、H.如果GM平分BGF,HN平分CHE,那么,GM与HN平行吗?为什么?AB

38、CDEFGHMN 18.如图,ABCD,BAE=300,ECD=600,那么AEC度数为多少?ABCDEABC北南D19.如图,B处在A处的南偏西450方向,C处在B处的北偏东800方向.(1)求ABC.(2)要使CDAB,D处应在C处的什么方向?(12分)20、如图所示,已知直线a,b,c,d,e,且1=2,3+4=180,则a与c平行吗?为什么? (13分)参 考 答 案一、1.B 2.D 3.B 4.B 5.C 6.C 7.C 8.B 9.D 10.D 二、11.(1) 12.AB BC AC 13. 800 14.1150 15. 9 三、16.1350,450,1350,450 提示:可以用方程.设B=x0 ,根据ADBC,得x+3x=180(两直线平行,同旁内角互补),解得x=45.以下略. 17.GMHN.理由:因为GM平分BGF,HN平分CHE,所以MGF= BGF,NHE= CHE,又因为ABCD,所以BGF=CHE(两直线平行,内错角相等),所以MGF=NHE.所以GMHN(内错角相等,两直线平行).ABCDEF2118.如图,过E作EFAB,则1=A=300();因为ABCD,所以EFCD(如果两条直线都与第三条直线平行,那么这两条直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论