下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课 题:83双曲线及其标准方程(一)教学目的:1使学生掌握双曲线的定义,熟记双曲线的标准方程,并能初步应用;2通过对双曲线标准方程的推导,提高学生求动点轨迹方程的能力;3使学生初步会按特定条件求双曲线的标准方程; 4使学生理解双曲线与椭圆的联系与区别以及特殊情况下的几何图形(射线、线段等); 5培养学生发散思维的能力教学重点:双曲线的定义、标准方程及其简单应用教学难点:双曲线标准方程的推导及待定系数法解二元二次方程组授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析:“双曲线及其标准方程”是在讲完了“圆的方程”、“椭圆及其标准方程”之后,学习又一类圆锥曲线知识,也是中学解
2、析几何中学习的重要的内容之一,它在社会生产、日常生活和科学技术止有着广泛的应用,大纲明确要求学生必须熟练掌握 本节教材仍是继续训练学生用坐标法解决方程与曲线有关问题的重要内容,对它的教学将帮助学生进一步熟悉和掌握求曲线方程的一般方法双曲线的定义和标准方程是本节的基本知识,所以必须掌握 而掌握好双曲线标准方程的推导过程又是理解和记忆标准方程的关键 应用双曲线的有关知识解决数学问题和实际应用问题是培养学生基本技能和基本能力的必要环节 坐标法是中学数学学习中必须掌握的一个重要方法,它充分体现了化归思想、数形结合思想,是用以解决实际问题的一个重要的数学工具 犹如前面学习的圆和圆锥曲线一样,双曲线也是一
3、种动点的轨迹 双曲线和其方程分属于几何和代数这两个分立的体系,但是通过直角坐标系人们又将它们很好地结合在一起 因此我们要充分利用这节教材对学生进行好思想教育双曲线的标准方程,内容可分为二个课时,第一课时内容主要是双曲线的定义和标准方程以及课本中的例1;第二课时主要是课本中的例2、例3及几个变式例题 教学过程:一、复习引入: 1 椭圆定义:平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段)两定点间距离较短,则所画出的椭圆较圆(圆)椭圆的形状与两定点间距离、绳长有关2.椭
4、圆标准方程:(1) (2) 其中二、讲解新课:1双曲线的定义:平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线 即这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距概念中几个容易忽略的地方:“平面内”、“距离的差的绝对值”、“常数小于” 在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(两条平行线) 两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(两条射线) 双曲线的形状与两定点间距离、定差有关2双曲线的标准方程: 根据双曲线的定义推导双曲线的标准方程:推导标准方程的过程就是求曲线方程的过程,可根据求动点轨迹方程的步骤,求出双曲线的标准方程 过程如下:
5、(1)建系设点;(2)列式;(3)变换;(4)化简;(5)证明取过焦点的直线为轴,线段的垂直平分线为轴 设P()为双曲线上的任意一点,双曲线的焦距是2()则 ,又设M与距离之差的绝对值等于2(常数),化简,得:,由定义 令代入,得:,两边同除得:,此即为双曲线的标准方程它所表示的双曲线的焦点在轴上,焦点是,其中若坐标系的选取不同,可得到双曲线的不同的方程,如焦点在轴上,则焦点是,将互换,得到,此也是双曲线的标准方程3双曲线的标准方程的特点: (1)双曲线的标准方程有焦点在x轴上和焦点y轴上两种: 焦点在轴上时双曲线的标准方程为:(,); 焦点在轴上时双曲线的标准方程为:(,)(2)有关系式成立
6、,且其中a与b的大小关系:可以为4.焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即项的系数是正的,那么焦点在轴上;项的系数是正的,那么焦点在轴上三、讲解范例:例1 判断下列方程是否表示双曲线,若是,求出三量的值 ()分析:双曲线标准方程的格式:平方差,项的系数是正的,那么焦点在轴上,项的分母是;项的系数是正的,那么焦点在轴上,项的分母是解:是双曲线, ; 是双曲线, ;是双曲线, ; 是双曲线, 例2 已知双曲线两个焦点的坐标为,双曲线上一点P到的距离之差的绝对值等于6,求双曲线标准方程 解:因为双曲线的焦点在轴上,所以设它的标准方程为(,) 所求双曲线标准方程为 四、课堂练习:1求=4,=3,焦点在轴上的双曲线的标准方程 2求=2,经过点(2,-5),焦点在轴上的双曲线的标准方程 3证明:椭圆与双曲线的焦点相同 4若方程表示焦点在轴上的双曲线,则角所在象限是( )A、第一象限 B、第二象限 C、第三象限 D、第四象限 5设双曲线上的点P到点的距离为15,则P点到的距离是( )A7 B.23 C.5或23 D.7或23练习答案:1. ; 2. ;3. , ;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流中心设备基础施工方案
- 2024-2030年中国行李拖车行业销售状况与需求趋势预测报告
- 2024-2030年中国蜜柑油产业未来发展趋势及投资策略分析报告
- 2024-2030年中国茶叶行业市场竞争格局及投资规模分析报告
- 2024-2030年中国舞蹈服装行业市场竞争趋势及投资营销模式分析报告
- 2024-2030年中国脱脂剂防锈剂除锈剂行业市场发展规模及投资可行性分析报告
- 2024-2030年中国聚合支付行业深度调查及投资运作模式分析报告
- 2024-2030年中国网络定制巴士行业营销模式及投资前景预测报告
- 2024-2030年中国筋骨伤喷雾剂产业未来发展趋势及投资策略分析报告
- 2024-2030年中国立体停车场行业发展模式及十三五规划分析报告(版)
- 2024年入团知识考试题库及答案
- 肿瘤化疗导致的中性粒细胞减少诊治中国专家共识(2023版)解读
- 《新能源汽车概论》课件-6新能源汽车空调系统结构及工作原理
- 2024年共青团入团考试题库(附答案)
- 田径运动会各种记录表格
- 产科新生儿疫苗接种课件
- 企业信息管理概述课件
- 室外健身器材投标方案(技术方案)
- 足浴店店长聘用合同范本
- tubeless胸科手术麻醉
- 电商免责声明范本
评论
0/150
提交评论