版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、期权的风险参数及特点期权的风险参数及特点 北京物资学院证券期货教研室北京物资学院证券期货教研室 刘宏刘宏 刘宏 主要内容 DeltaDelta(或) Gamma() Theta() VegaVega () RhoRho(rhorho) 期权的风险参数 期权的价格风险主要发生在卖权上,裸露看涨期权和看跌期权的价格风险主要发生在卖权上,裸露看涨期权和看跌 期权均存在较大的价格风险,与其他金融工具对冲目的相期权均存在较大的价格风险,与其他金融工具对冲目的相 似,期权的价格风险也可以采取相应的措施加以规避或对似,期权的价格风险也可以采取相应的措施加以规避或对 冲。期权的风险参数可用于调整和控制期权及组
2、合的价格冲。期权的风险参数可用于调整和控制期权及组合的价格 风险。风险。 目前国际金融市场上不同因素对期权价格的影响分别用不同目前国际金融市场上不同因素对期权价格的影响分别用不同 的希腊字母表示,包括标的物价格、距离到期日时间,波动的希腊字母表示,包括标的物价格、距离到期日时间,波动 率、利率以及标的物价格变动的变动对期权价格的影响。以率、利率以及标的物价格变动的变动对期权价格的影响。以 上因素对期权价格的影响分别用上因素对期权价格的影响分别用delta、theta、vega、rho、 gamma等希腊字母表示。等希腊字母表示。 一一、期权期权的的Delta 期权或资产的期权或资产的Delta
3、 (或或)被定义为期权或资产价格变动)被定义为期权或资产价格变动 对其标的资产价格变动的比率对其标的资产价格变动的比率,数学上看是期权价值对标的资数学上看是期权价值对标的资 产价格的偏导数,是期权价格与标的资产价格关系曲线的斜率。产价格的偏导数,是期权价格与标的资产价格关系曲线的斜率。 S f 式中:式中:f为期权或资产的价格,为期权或资产的价格,S为标的资产的价格。为标的资产的价格。 也看可通过布莱克斯科尔斯期权定价公式求得。也看可通过布莱克斯科尔斯期权定价公式求得。 )( 1 dN c 1)()( 11 dNdN p 不支付红利的看涨和看跌期权的不支付红利的看涨和看跌期权的 : 如果标的资
4、产为有收益,且其收益率为如果标的资产为有收益,且其收益率为q,则有:则有: )( 1 dNe qT c 1)()( 11 dNedNe qTqT p 可通过二叉树的无套利定价模型求得:可通过二叉树的无套利定价模型求得: S Su u- -S Sd d=C=Cu u -C -Cd d 期权期权的的Delta风风险险 欧式看涨期权的欧式看涨期权的delta 欧式看跌期权与标的资产的价格关系欧式看跌期权与标的资产的价格关系 Delta风险是指标的资产价格变化引起的期权价格的波动。风险是指标的资产价格变化引起的期权价格的波动。 不仅期权有不仅期权有delta风险,远期、期货等衍生产品同样也有风险,远期
5、、期货等衍生产品同样也有delta风风 险。险。远期合约的远期合约的=1,期货合约的,期货合约的=ert。 期权期权Delta的的特点特点 期权期权Delta取值取值:从计算公式看出,期权:从计算公式看出,期权delta 绝对值的范围在绝对值的范围在 01之间,欧式看涨期权的之间,欧式看涨期权的delta值总是大于值总是大于0小于小于1,而看跌期,而看跌期 权的权的delta值位于值位于-1到到0之间,这意味着标的资产价格变动总是大之间,这意味着标的资产价格变动总是大 于由其引起的期权价格的变动。于由其引起的期权价格的变动。 Delta的线性特征:对于一个组合价值为的线性特征:对于一个组合价值
6、为的投资组合,的投资组合,= Wi*Ci ,组合的组合的Delta值等于每种资产的值等于每种资产的Delta的线性和,即:的线性和,即: 其中其中, Wi表示组合包含第表示组合包含第i种期权的数量。种期权的数量。delta值大于值大于0的投资组的投资组 合被称为牛市组合,合被称为牛市组合,delta值小于值小于0被称为熊市组合。被称为熊市组合。 1 n ii i w 期权期权Delta特点特点-标的资产价格与期权标的资产价格与期权Delta的的关系关系 对于看涨期权,当期权处于深度虚值,多头几乎不存在行权机会,对于看涨期权,当期权处于深度虚值,多头几乎不存在行权机会, 期权价格非常小,且几乎不
7、随标的资产价格上涨而上涨,当期权期权价格非常小,且几乎不随标的资产价格上涨而上涨,当期权 虚值程度减弱时,期权价格会随着标的资产价格上涨而上涨,且虚值程度减弱时,期权价格会随着标的资产价格上涨而上涨,且 上涨速度会加快,期权的上涨速度会加快,期权的值不断增大。值不断增大。 看跌期权delta与标的资产的关系 看涨期权delta与标的资产的关系 当标的资产价格接近行权价格,即期权接近平值时,标的资产价当标的资产价格接近行权价格,即期权接近平值时,标的资产价 格稍稍的变动都会导致期权虚、实值转换,因此在上涨接近执行格稍稍的变动都会导致期权虚、实值转换,因此在上涨接近执行 价格时期权价格随标的资产价
8、格上涨程度加大,期权的上涨速度价格时期权价格随标的资产价格上涨程度加大,期权的上涨速度 加快,期权的加快,期权的值变大,在平值附近时值变大,在平值附近时最大。最大。 期权期权Delta特点特点-标的资产价格与期权标的资产价格与期权Delta的的关系关系 标的资产价格在行权价格以上时,随着标的资产价格的上涨,期标的资产价格在行权价格以上时,随着标的资产价格的上涨,期 权价格会随之上涨。当标的资产价格超过行权价格很多,即期权权价格会随之上涨。当标的资产价格超过行权价格很多,即期权 处于深度实值时,标的资产价格的进一步上涨将变得困难,期权处于深度实值时,标的资产价格的进一步上涨将变得困难,期权 价格
9、接近内在价值,期权价格与标的资产价格上涨幅度保持一致,价格接近内在价值,期权价格与标的资产价格上涨幅度保持一致, 值趋近于值趋近于1,期权价格随标的物价格上涨速度减慢,即,期权价格随标的物价格上涨速度减慢,即增大增大 速度变缓。速度变缓。 所以,对于看涨期权,随着标的资产价格上涨,所以,对于看涨期权,随着标的资产价格上涨,变化的速度有变化的速度有 一个先变大再变小的过程,接近执行价格时的一个先变大再变小的过程,接近执行价格时的变动速度最快。变动速度最快。 对于看跌期权,由于标的物价格变动方向与期权价格变动方向对于看跌期权,由于标的物价格变动方向与期权价格变动方向 相反,所以看跌期权的相反,所以
10、看跌期权的为负值。随着标的资产价格的下跌,为负值。随着标的资产价格的下跌, 期权期权的绝对值不断增大,即标的物价格下跌,期权价格上涨,的绝对值不断增大,即标的物价格下跌,期权价格上涨, 标的物价格接近执行价格时标的物价格接近执行价格时值变化速度最快。值变化速度最快。 由于期权由于期权的绝对值在的绝对值在0 01 1之间,所以期权变化值始终小于标的之间,所以期权变化值始终小于标的 资产价格变化值资产价格变化值。 看涨期权价格对标的物价格波动的敏感度: Call(European):K=50,T=20周,周,r=5%,=13% 看跌期权价格对标的物价格波动的敏感度: Put(European):
11、K=50,T=20周,周,r=5%,=13% 期权期权Delta特点特点-到期时间对期权到期时间对期权Delta的的影响影响 看跌期权delta与到期时间的关系 看涨期权delta与到期时间的关系 因为对于看涨期权,因为对于看涨期权,S实值 实值S平值平值S虚值虚值,由于 由于S越大期权的值越大,越大期权的值越大, 所以所以实值 实值 平值 平值 虚值 虚值。对于实值期权,随着到期日的临近其 。对于实值期权,随着到期日的临近其 不断增大,直至等于不断增大,直至等于1;对于虚值期权随着到期日的临近不;对于虚值期权随着到期日的临近不 断变小。例如,一个处于深度实值的期权,在其他条件不变的情断变小。
12、例如,一个处于深度实值的期权,在其他条件不变的情 况下,随着到期日的临近,其处于实值以上的概率将越来越大,况下,随着到期日的临近,其处于实值以上的概率将越来越大, 期权价格变化将于标的资产价格变化趋于一致,趋于期权价格变化将于标的资产价格变化趋于一致,趋于1 。 期权期权Delta特点特点-到期时间对期权到期时间对期权Delta的的影响影响 对于虚值期权,随着到期日的临近标的物价格涨到执行价格以上对于虚值期权,随着到期日的临近标的物价格涨到执行价格以上 的概率越小,因此,对于虚值期权,越接近到期其的概率越小,因此,对于虚值期权,越接近到期其delta越小,越小, 而且随时间推移期权的时间价值加
13、速下降,最终下降到零并停留而且随时间推移期权的时间价值加速下降,最终下降到零并停留 在那里,由于时间太短,标的资产价格变化已难影响到期权,期在那里,由于时间太短,标的资产价格变化已难影响到期权,期 权的权的delta值变为零。值变为零。 对于平值期权,不论何时,其价格向上或向下走的概率基本相等,对于平值期权,不论何时,其价格向上或向下走的概率基本相等, 因此平值期权的因此平值期权的delta理论上是等于理论上是等于0.5的,但是由于标的资产价的,但是由于标的资产价 格不可能小于格不可能小于0,其价格上行的空间要远大于价格下行的空间,其价格上行的空间要远大于价格下行的空间, 因此平值期权的因此平
14、值期权的delta会略高于会略高于0.5。平值期权的。平值期权的delta是近似线性是近似线性 的,在到期日的,在到期日delta接近接近0.5。 对于看跌期权,对于看跌期权, 小于小于0,S实值 实值 S平值 平值 S虚值 虚值, S越小期权值 越小期权值 的绝对值越大,考虑绝对值,的绝对值越大,考虑绝对值,实值 实值 平值 平值 虚值 虚值。对于实值期 。对于实值期 权,随着到期日的临近其得的绝对值不断增大,直至等于权,随着到期日的临近其得的绝对值不断增大,直至等于-1; 对于虚值期权随着到期日的临近由负值向对于虚值期权随着到期日的临近由负值向0趋近。趋近。 期权期权Delta特点特点-波
15、动率对期权波动率对期权Delta的的影响影响 波动率对看涨期权delta的影响 之前对之前对delta的讨论都是基于布莱克斯科尔斯定价公式,基于的讨论都是基于布莱克斯科尔斯定价公式,基于 波动率不变的前提,波动率会对期权波动率不变的前提,波动率会对期权delta产生怎样的影响?产生怎样的影响? 标的资产波动率高时,期权标的资产波动率高时,期权 处于虚值状态的情形对标的处于虚值状态的情形对标的 资产价格的变化会相对敏感,资产价格的变化会相对敏感, 而在实值状态下反应相对迟而在实值状态下反应相对迟 钝。钝。 标的资产的波动率越小,标的资产的波动率越小, 看涨期权的时间价值较少,看涨期权的时间价值较
16、少, 因此在虚值状态它对标的因此在虚值状态它对标的 资产价格的变动并不敏感,资产价格的变动并不敏感, delta会很小,但是在实值会很小,但是在实值 状态,它的状态,它的delta值就会变值就会变 得很大。得很大。 Delta对冲对冲即利用即利用delta计算对冲期权头寸风险的套保比率计算对冲期权头寸风险的套保比率 例例1.某金融机构卖出某金融机构卖出10万份无息票股票的欧式看涨期权,收入万份无息票股票的欧式看涨期权,收入 30万美元。假设股票价格为万美元。假设股票价格为49美元,期权执行价格为美元,期权执行价格为50美元,美元, 无风险利率为每年无风险利率为每年5%,股票价格的波动率为每年,
17、股票价格的波动率为每年20%,期权期,期权期 限为限为20周(周(0.3846年),股票的期望收益率为每年年),股票的期望收益率为每年13%。 S0=49,K=50,r=5%,=0.20,T=0.3846, =0.13 0542. 0 3846. 0*2 . 0 3846. 0*)2/2 . 005. 0()50/49ln( 2 1 d )(1dN 欧式看涨期权的欧式看涨期权的=0.522 DeltaDelta为为0.5220.522,表明期权价格变化是其标的股票价格变化的,表明期权价格变化是其标的股票价格变化的 0.5220.522倍。倍。 Delta对冲对冲 金融机构要对冲金融机构要对冲1
18、00000份看涨期权空头头寸的风险,看通过买份看涨期权空头头寸的风险,看通过买 入入100000*0.522=52200股股票的方式实现。股股票的方式实现。 当股票价格由当股票价格由49美元上涨至美元上涨至50美元时,期权价格应该由美元时,期权价格应该由3美元美元 上涨至上涨至3+0.522=3.522美元,美元,100000份期权空头损失份期权空头损失 0.522*100000=52200美元;而股票多头盈利美元;而股票多头盈利52200美元。美元。 如果如果股票价格由股票价格由49美元下跌美元下跌2美元至美元至47美元时,股票多头合计美元时,股票多头合计 亏损亏损104400美元,而期权价
19、格应该下跌美元,而期权价格应该下跌0.522*2=1.044美元,美元, 至至1.565美元,美元,100000份空头盈利份空头盈利1.044*100000=104400美元。美元。 以上情况看出,无论标的股票上涨还是下跌,组合均可实现盈以上情况看出,无论标的股票上涨还是下跌,组合均可实现盈 亏相抵。亏相抵。 考虑资金成本和标的资产价格变化 买入股票的资金买入股票的资金=49*52200=2557800美元,如果借入资金的美元,如果借入资金的 成本为成本为5%,借入一周需要资金,借入一周需要资金2557800*5%(4937/360) =2486.75美元。美元。 期权头寸的期权头寸的Dela
20、t随着标的股票价格的变化而变化,需不断调随着标的股票价格的变化而变化,需不断调 整股票头寸以使得组合头寸的整股票头寸以使得组合头寸的Delat为为0。见下表。见下表。 对冲期权空头头寸所需股票数对冲期权空头头寸所需股票数45800股股,需减持需减持52200- 45800=64006400股股票。股股票。退出资金退出资金=6400*48.12=307.97千元千元, 资金占用资金占用2557.8-308+2.5=2252.3 Delat=N(-0.1054)=1-N(0.1054)=1-0.542=0.458 一周后一周后Delat的计算的计算(剩余时间为(剩余时间为19周周=0.3654年)
21、年): 1054. 0 3654. 0*2 . 0 3654. 0*)2/2 . 005. 0()50/12.48ln( 2 1 d 周数周数股票价格股票价格DeltaDelta购买股票数量购买股票数量购买股票费用购买股票费用( (千千) )累计现金流累计现金流( (千千) ) 利息费用利息费用( (千千) ) 0 049.00 49.00 0.522 0.522 52200522002557.8 2557.8 2557.8 2557.8 2.5 2.5 1 148.12 48.12 0.458 0.458 -6400-6400-308.0 -308.0 2252.3 2252.3 2.2 2
22、.2 2 247.37 47.37 0.400 0.400 -5800-5800-274.7 -274.7 1979.8 1979.8 1.9 1.9 3 350.25 50.25 0.596 0.596 1960019600984.9 984.9 2966.6 2966.6 2.9 2.9 4 451.75 51.75 0.693 0.693 97009700502.0 502.0 3471.5 3471.5 3.3 3.3 5 553.12 53.12 0.774 0.774 81008100430.3 430.3 3905.1 3905.1 3.8 3.8 6 653.00 53.00
23、0.706 0.706 -300-300-15.9 -15.9 3893.0 3893.0 3.7 3.7 7 751.87 51.87 0.706 0.706 -6500-6500-337.2 -337.2 3559.5 3559.5 3.4 3.4 8 853.87 53.87 0.674 0.674 -3200-3200-164.4 -164.4 3398.5 3398.5 3.3 3.3 9 953.00 53.00 0.787 0.787 1130011300598.9 598.9 4000.7 4000.7 3.8 3.8 101049.88 49.88 0.550 0.550 -
24、23700-23700-1182.2 -1182.2 2822.3 2822.3 2.7 2.7 111148.50 48.50 0.413 0.413 -13700-13700-664.4 -664.4 2160.6 2160.6 2.1 2.1 121249.88 49.88 0.543 0.543 1290012900643.5 643.5 2806.2 2806.2 2.7 2.7 131350.37 50.37 0.591 0.591 49004900246.8 246.8 3055.7 3055.7 2.9 2.9 141452.13 52.13 0.768 0.768 17700
25、17700922.7 922.7 3981.3 3981.3 3.8 3.8 151551.88 51.88 0.759 0.759 -900-900-46.7 -46.7 3938.4 3938.4 3.8 3.8 161652.87 52.87 0.865 0.865 1060010600560.4 560.4 4502.6 4502.6 4.3 4.3 171754.87 54.87 0.978 0.978 1130011300620.0 620.0 5126.9 5126.9 4.9 4.9 181854.62 54.62 0.990 0.990 1200120065.5 65.5 5
26、197.3 5197.3 5.0 5.0 191955.87 55.87 1.000 1.000 1000100055.9 55.9 5258.2 5258.2 5.1 5.1 202057.52 57.52 1.000 1.000 0 00.0 0.0 5263.3 5263.3 Delta对冲对冲利用利用Delta计算对冲股票组合风险的套保比率计算对冲股票组合风险的套保比率 例例2.假设有一个复制沪深假设有一个复制沪深300指数的股票组合,价值为指数的股票组合,价值为3000万万 元。股票组合的管理人计划持有该组合半年,并为该组合设元。股票组合的管理人计划持有该组合半年,并为该组合设 置了
27、置了5%的止损线,即当组合价值跌到的止损线,即当组合价值跌到2850万以下时平仓出局。万以下时平仓出局。 为了股票组合的价值得到充分保护,投资人最理想的办法是为了股票组合的价值得到充分保护,投资人最理想的办法是 能买入一个执行价格为能买入一个执行价格为2850万元的看跌期权,还有一种办法万元的看跌期权,还有一种办法 就是通过就是通过delta复制,创造出所需要的期权(卖出标的资产同复制,创造出所需要的期权(卖出标的资产同 时买进看涨期权,等同于买进看跌期权)。时买进看涨期权,等同于买进看跌期权)。 假设无风险利率为假设无风险利率为3%每年,红利收益率为每年,红利收益率为1%每年,市场波动每年,
28、市场波动 率率25%,于是有:,于是有:S0=3000元,元,K=2850元,元,r=3%,q=1%, T=6/12,=25%。可以算出所需期权的初始。可以算出所需期权的初始delta值为:值为: 3184. 01)( 1 dNe qT 如果交易者用看跌期权来对冲股票组合的风险,需买进如果交易者用看跌期权来对冲股票组合的风险,需买进 10000/0.3184份看跌期权。份看跌期权。 如果股票价格下跌如果股票价格下跌3%,价格跌至,价格跌至3000*(1-3%)=2910,价,价 格下跌格下跌3000-2910=90元,股票组合的市值降至元,股票组合的市值降至2910万元,下万元,下 跌跌90万
29、元。看跌期权价格会上涨,每张期权会上涨万元。看跌期权价格会上涨,每张期权会上涨90*0.3184 元,期权总头寸将上涨(元,期权总头寸将上涨(10000/0.3184)* 90*0.3184=90万元,万元, 组合头寸盈亏平衡。组合头寸盈亏平衡。 随着股票价格的下跌,随着股票价格的下跌, 对于期权的对于期权的delta的绝对值增加,所需的绝对值增加,所需 期权空头头寸应该减少。期权空头头寸应该减少。 例例1 1中,金融机构中,金融机构1010万份看涨期权空头头寸的万份看涨期权空头头寸的DeltaDelta为:为: 0.5220.522* *(-100000-100000)=-52200=-52
30、200美元。美元。 Delta中性 每股股票的每股股票的DeltaDelta为为1 1,5220052200股股票多头的总股股票多头的总DeltaDelta为为5220052200美美 元。股票头寸的元。股票头寸的DeltaDelta与期权头寸的与期权头寸的DeltaDelta抵消,金融机构组抵消,金融机构组 合头寸的合头寸的DeltaDelta为为0 0。DeltaDelta为为0 0的头寸被成为的头寸被成为DeltaDelta中性。中性。 表明金融机构所持标的股票每股涨跌表明金融机构所持标的股票每股涨跌美元,期权总头寸将美元,期权总头寸将 反向变化反向变化5220052200美元。美元。
31、由于由于DeltaDelta会变动,投资者的会变动,投资者的DeltaDelta策略(或策略(或DeltaDelta中性状态)中性状态) 只能维持在一段短暂的时间里,要实现对冲风险的目的,对只能维持在一段短暂的时间里,要实现对冲风险的目的,对 冲策略需要不断调整,持续保持冲策略需要不断调整,持续保持DeltaDelta中性。中性。 DelatDelat动态调整的特点动态调整的特点 要维持要维持Delat中性就要根据标的物价格的变化而导致的中性就要根据标的物价格的变化而导致的 Delat值的变化对股票持仓进行调整。值的变化对股票持仓进行调整。 因此,因此,Delat动态调整的缺陷动态调整的缺陷
32、是追涨杀跌!是追涨杀跌! 当使用标的股票空头对冲看跌期权空头时,标的股票上涨时当使用标的股票空头对冲看跌期权空头时,标的股票上涨时 期权期权Delat的绝对值减少,需买入一定量的股票头寸保持组合的绝对值减少,需买入一定量的股票头寸保持组合 的的Delat中性;当标的股票下跌时中性;当标的股票下跌时Delat绝对值增大,需卖出绝对值增大,需卖出 更多的股票头寸对冲看跌期权空头。更多的股票头寸对冲看跌期权空头。 Delat度量的是标的资产价格度量的是标的资产价格 变化引起的期权价格的近似变变化引起的期权价格的近似变 化,标的资产价格变化引起的化,标的资产价格变化引起的 Delat的近似变化用的近似
33、变化用表示。 期权的期权的是指是指证券组合价值证券组合价值DeltaDelta变化与标的资产价格变化的变化与标的资产价格变化的 比率。比率。是证券组合关于标的资产价格的二级偏导数,是证券组合关于标的资产价格的二级偏导数,gamma 也被称作期权价格与标的资产价格关系曲线的曲率也被称作期权价格与标的资产价格关系曲线的曲率。 TS dN SS 0 1 2 2 )( )( 看涨和看跌 二、期权的Gamma() 例例1 1的的值等于值等于0.06560.0656,表明当股票价格变化,表明当股票价格变化SS时,期权时,期权 的价值变化为的价值变化为0.522S0.522S,DeltaDelta变化为变化
34、为0.0656S0.0656S。 是度量是度量DeltaDelta对标的资产价格波动敏感度的指标,对标的资产价格波动敏感度的指标,风险是风险是 指标的物价格波动引起的期权指标的物价格波动引起的期权DeltaDelta的波动。当的波动。当gammagamma的绝对的绝对 值较大时,表明值较大时,表明deltadelta对标的资产价格波动十分敏感,标的资对标的资产价格波动十分敏感,标的资 产的微小变动会导致期权的大幅变动,期权的产的微小变动会导致期权的大幅变动,期权的风险很大,风险很大, 此时若不对此时若不对deltadelta中性投资组合的持仓进行调整就将产生较大中性投资组合的持仓进行调整就将产
35、生较大 的价格风险。调整的目标是使组合头寸的的价格风险。调整的目标是使组合头寸的gammagamma等于等于0 0,gammagamma 为为0 0的投资组合被称为的投资组合被称为gammagamma中性。中性。 同一标的资产的看涨和看跌期权的同一标的资产的看涨和看跌期权的gammagamma值相等。值相等。 期权Gamma()的特点 只要是期权多头,无论是看涨还是看跌,只要是期权多头,无论是看涨还是看跌,值均大于值均大于0 0;反之,;反之, 只要是期权空头,无论是看涨还是看跌,只要是期权空头,无论是看涨还是看跌,值均小于值均小于0 0。买入。买入 期权又被称为买入期权又被称为买入,为正值为
36、正值, ,买入期权即期权多头,又称买入期权即期权多头,又称 为期权长头寸,所以买入为期权长头寸,所以买入包括看涨期权长头寸和建立看跌期包括看涨期权长头寸和建立看跌期 权长头寸;卖出期权被称为卖出权长头寸;卖出期权被称为卖出,为负值,卖出为负值,卖出包括看包括看 涨期权短头寸和看跌期权短头寸。涨期权短头寸和看跌期权短头寸。 之前对之前对的分析可知,当标的资产价格在执行价格附近时,的分析可知,当标的资产价格在执行价格附近时, 期权期权的的变动最快。所以平值期权的变动最快。所以平值期权的最大。最大。 随着标的资产价格的增长随着标的资产价格的增长值不断变大的,所以值不断变大的,所以delta对标的对标
37、的 资产价格的偏导数应为一个正值,即资产价格的偏导数应为一个正值,即值总是大于值总是大于0 0。 与与一样,证券组合的一样,证券组合的值就等于组合内各种衍生证券值就等于组合内各种衍生证券值的值的 总和。对于远期、期货等收益曲线为线性的金融工具而言,总和。对于远期、期货等收益曲线为线性的金融工具而言, 他们的他们的为为0。 期权Gamma()的特点Delat对标的物价格波动 的敏感度: Call和和Put(European): K=50,T=20周,周,r=5%,=13% 实值、平值、虚值期权受到期时间变化的影响不同。实值、平值、虚值期权受到期时间变化的影响不同。 期权Gamma()的特点-到期
38、时间对的影响 对于平值期权,期权价格会紧随标的资产价格变动而变动,对于平值期权,期权价格会紧随标的资产价格变动而变动, 越临近到期,越临近到期,delta值变化越剧烈,其值变化越剧烈,其gamma值越高。因此平值越高。因此平 值期权在临近到期时,值期权在临近到期时,gamma会变得很大。会变得很大。 依据对依据对delta和标的资产价格的关系,和标的资产价格的关系, 随着标的资产价格的提随着标的资产价格的提 供,供,delta的变化速度是先大后小,在平值期权附近的变化速度是先大后小,在平值期权附近delta变化变化 速度最大,所以接近平值时的速度最大,所以接近平值时的gamma值最大,值最大,
39、虚值期权的虚值期权的 gamma 高于实值期权的高于实值期权的gamma。 当期权的到期时间还有很长时,标的资产价格变化对期权价当期权的到期时间还有很长时,标的资产价格变化对期权价 格的影响相对较小,格的影响相对较小,delta随时间变化十分缓慢而稳定,相对随时间变化十分缓慢而稳定,相对 应的应的gamma值也比较稳定且数值不大。值也比较稳定且数值不大。 nGamma也可用来估计一个也可用来估计一个delta中性的投资组合当价格变化时中性的投资组合当价格变化时 该投资组合价格的变动。该投资组合价格的变动。 期权Gamma()的特点-到期时间对的影响 gamma与距离到期时间的关系与距离到期时间
40、的关系 Gamma()对冲 要规避投资组合的价格风险,不仅要保持要规避投资组合的价格风险,不仅要保持delta中性,中性, delta对标对标 的资产变化比较敏感时,还要保持组合的的资产变化比较敏感时,还要保持组合的gamma中性。由于标中性。由于标 的资产及其衍生出来的期货和远期合约的的资产及其衍生出来的期货和远期合约的Gamma(二阶导数)(二阶导数) 等于等于0,所以不能通过他们来改变投资组合的,所以不能通过他们来改变投资组合的gamma。要实现。要实现 Gamma中性,只有使用像期权那样价格与标的资产价格呈非线中性,只有使用像期权那样价格与标的资产价格呈非线 性关系的工具来进行对冲。当
41、在组合中加入新的期权合约时,也性关系的工具来进行对冲。当在组合中加入新的期权合约时,也 改变了投资组合的改变了投资组合的delta值,为了使投资组合重新实现值,为了使投资组合重新实现delta中性,中性, 还需要计算新的还需要计算新的delta值并利用标的资产或者标的资产的远期值并利用标的资产或者标的资产的远期 (期货)合约来进行对冲,以期实现新的(期货)合约来进行对冲,以期实现新的delta中性状态。中性状态。 Gamma中性策略可以看做是中性策略可以看做是delta中性策略的一个补充。当标的中性策略的一个补充。当标的 资产价格变动较小的时候,资产价格变动较小的时候,delta中性即可为投资
42、组合提供足够中性即可为投资组合提供足够 的保护,但是当价格发生较大的变化时,则需要利用的保护,但是当价格发生较大的变化时,则需要利用gamma中中 性来提供额外的保护。性来提供额外的保护。 Gamma()对冲 假设某假设某delta中性的有价证券组合其中性的有价证券组合其gamma值为值为-4500,某具有,某具有 相同标的资产的看涨期权的相同标的资产的看涨期权的gamma值为值为1.5,delta值为值为0.51, 我们用这个期权来实现我们用这个期权来实现gamma中性,需要购入中性,需要购入4500/1.5=3000 份这一期权。购入期权后,新的组合的份这一期权。购入期权后,新的组合的de
43、lta值为值为 0.51*3000=1530。为了实现新的。为了实现新的delta中性,需要卖空中性,需要卖空1530份标份标 的资产。的资产。 投资者先决定用于投资者先决定用于gamma对冲的期权,再计算加入新的期权后对冲的期权,再计算加入新的期权后 整个投资组合的整个投资组合的delta值,然后选择相应数量与方向的标的资产值,然后选择相应数量与方向的标的资产 进行进行delta对冲即可。但是,与对冲即可。但是,与Delta对冲类似,对冲类似,Gamma对冲也对冲也 只能保持短时间只能保持短时间Gamma中性,要完全的对冲掉中性,要完全的对冲掉gamma的风险的风险 也需要进行动态对冲。也需
44、要进行动态对冲。 Gamma()对冲 例:假设某例:假设某delta中性的投资组合中性的投资组合gamma为为-10000,当资产价格,当资产价格 在极短的时间内发生在极短的时间内发生-1或者或者+1的变动,该投资组合的价值将减少的变动,该投资组合的价值将减少 (1/2)*10000*12=5000。 对冲该对冲该Gamma风险,可采用看涨期权长头寸或看跌期权长头寸风险,可采用看涨期权长头寸或看跌期权长头寸 策略。如果采用看涨期权长头寸来实现策略。如果采用看涨期权长头寸来实现Gamma中性,中性, 新组合的新组合的 delta会大于会大于0,需卖出一定量的标的资产来实现,需卖出一定量的标的资产
45、来实现delta中性;如中性;如 果采用看跌期权长头寸来实现果采用看跌期权长头寸来实现Gamma中性,中性, 新组合的新组合的delta会会 小于小于0,需买进一定量的标的资产来实现,需买进一定量的标的资产来实现delta中性。中性。 期权的期权的ThetaTheta定义为在其他条件不变时,证券组合价值变化与定义为在其他条件不变时,证券组合价值变化与 时间变化的比率。时间变化的比率。ThetaTheta也被称为时间的损耗(也被称为时间的损耗(time decaytime decay)。)。 对于一个无股息股票的对于一个无股息股票的欧式看涨期权,根据欧式看涨期权,根据Black-Scholes-
46、Black-Scholes- MertonMerton模型,期权的模型,期权的ThetaTheta为:为: 2/ 2 2 1 )( x exN 三、Theta() 在计算在计算时,时间以天为单位,因此时,时间以天为单位,因此为在其他条件不变时,为在其他条件不变时, 在一天过后交易组合价值的变化。如果计算每日历天在一天过后交易组合价值的变化。如果计算每日历天,上,上 面的公式必须除以面的公式必须除以365365,如果计算交易日,如果计算交易日,上面的公式应该,上面的公式应该 除以除以252252。 )( )( 欧式看涨) 2 10 2 (dNrKe T dNS rT )( )( 欧式看跌) 2
47、10 2 (dNrKe T dNS rT d1和和 d2可由可由 Black-Scholes- Merton模型求得模型求得. 前例中,不支付股利的股票看涨期权,股票价格为前例中,不支付股利的股票看涨期权,股票价格为49美元,美元, 期权执行价格为期权执行价格为50美元,无风险利率为美元,无风险利率为5%,期限为,期限为20周周 (0.3846年),股票价格的波动率为年),股票价格的波动率为20%。计算期权的。计算期权的。 3984. 09985. 0* 2 1 2 1 )05417. 0()( 2/05417. 0 1 2 eNdN 305. 44722. 0*50*%5 3846. 02
48、%20*3984. 0*49 3846. 0%*5 e 05417. 0 5 . 03846. 0*%20 02692. 00202. 0 5 . 03846. 0*%20 3846. 0*)2/2%20%5()50/49ln( 1 d 06986. 0 5 . 03846. 0*%20 3846. 0*)2/2%20%5()50/49ln( 2 d 每日历天的每日历天的Theta为为-2.98/365=0.00815,每交易日的,每交易日的Theta为为- 2.98/252=-0.1183。 N(d1)=0.5216, N(d2)=0.4722 用来衡量投资组合时间损耗的速度。随着组合持有时
49、间的增长,用来衡量投资组合时间损耗的速度。随着组合持有时间的增长, 到期日越来越临近,期权的时间价值越来越小,因此买权和卖权到期日越来越临近,期权的时间价值越来越小,因此买权和卖权 的的值值通常为负数,通常为负数,而随着时间的流逝,期权空头方将得到时间而随着时间的流逝,期权空头方将得到时间 价值,所以买权和卖权空头的价值,所以买权和卖权空头的值一般为正数。值一般为正数。 Theta()的特点 Theta的损耗是非线性的,越临近交割日其损耗越快。的损耗是非线性的,越临近交割日其损耗越快。 theta和标的资产价格的关系与和标的资产价格的关系与gamma 和标的资产价格的关和标的资产价格的关 系十
50、分相似,在实际运用中系十分相似,在实际运用中theta经常被当做是经常被当做是gamma的镜像的镜像 值。对于值。对于delta中性的投资组合而言,中性的投资组合而言,gamma和和theta是近似是近似 互为相反数的两个值。当买入期权,也就是买入了互为相反数的两个值。当买入期权,也就是买入了gamma, 但同时也就要承担时间价值也就是但同时也就要承担时间价值也就是theta的损失,也就是卖出的损失,也就是卖出 了了theta。对于这两者的操作是不可能同向的。对于这两者的操作是不可能同向的。 Theta()的特点 theta和标的资产价格的关系和标的资产价格的关系 theta和距离到期时间的关
51、系和距离到期时间的关系 四、四、DeltaDelta()、)、Theta Theta ()和)和GammaGamma() 之间的关系之间的关系 依据依据Black-Scholes-MertonBlack-Scholes-Merton模型,模型,无息票股票的单个衍生产无息票股票的单个衍生产 品的价格满足下式:品的价格满足下式: rf S f S S f rS t f 2 2 22 2 1 Delta : 标的资产价格每变动标的资产价格每变动1个单位,期权价格的变化值个单位,期权价格的变化值 Gamma :标的资产价格每变动标的资产价格每变动1个单位,个单位, 期权期权Delta的变化值的变化值
52、Theta : 假设标的资产与其他参数不变,每天期权的变动值假设标的资产与其他参数不变,每天期权的变动值 当期权的当期权的为负时,为负时, 为正,反之依然。由于在其他条件不为正,反之依然。由于在其他条件不 变的情况下,期权的价值会随着期限的缩短而降低,所以,变的情况下,期权的价值会随着期限的缩短而降低,所以, 通常情况下,买权的通常情况下,买权的为负值,而为负值,而为正值。为正值。 由衍生产品所组成的资产组合由衍生产品所组成的资产组合也一定满足以下方程:也一定满足以下方程: r S S S rS t 2 2 22 2 1 根据根据DeltaDelta()、)、Theta Theta ()和)和
53、GammaGamma()的定义,)的定义, 上式可变为:上式可变为: rSrS 22 2 1 对于对于DeltaDelta中性的组合,中性的组合,=0=0,有:,有: rS 22 2 1 上式说明,当上式说明,当很大并为正时,交易组合的很大并为正时,交易组合的有很大但为负,有很大但为负, 反之依然。同时也说明,对于反之依然。同时也说明,对于DeltaDelta中性的组合,可以将中性的组合,可以将作作 为为的近似。的近似。 交易组合的交易组合的VageVage被定义为交易组合价值变化与标的资产波动被定义为交易组合价值变化与标的资产波动 率变化的比率。率变化的比率。 五、五、 VegaVega (
54、) 上面的研究均假设衍生证券的波动率为常数,但实际中,波动上面的研究均假设衍生证券的波动率为常数,但实际中,波动 率会随时间变化,这意味着衍生证券的价值既会随标的资产价率会随时间变化,这意味着衍生证券的价值既会随标的资产价 格与期限的变化而变化,也会随着波动率的变化而变化格与期限的变化而变化,也会随着波动率的变化而变化。 对于无股息股票的欧式看涨和看跌期权,对于无股息股票的欧式看涨和看跌期权, 计算前例的计算前例的: )(1 0 dNTS 即当标的资产波动率变化即当标的资产波动率变化1%1%时,时, 期权价格将变化期权价格将变化0.1210.121。 1 .123984. 0*3846. 0*
55、49 S=49,T=0.3846,N(d1)=0.3984 标的资产的头寸标的资产的头寸以及标的资产的远期合约、期货合约的价格以及标的资产的远期合约、期货合约的价格 与波动率无关,因此他们的与波动率无关,因此他们的vega值均为值均为0。 VegaVega ()的特点)的特点 在其它条件不变的情况下,标的资产的波动率越高,多头的机在其它条件不变的情况下,标的资产的波动率越高,多头的机 会越大,期权的价值越高。所以,对于期权多头,不论是看涨会越大,期权的价值越高。所以,对于期权多头,不论是看涨 期权还是看跌期权,期权还是看跌期权,都是正值;而期权空头的都是正值;而期权空头的 为负值。为负值。 值
56、值 为正表明波动率增大期权价值下降,为正表明波动率增大期权价值下降,值为负表明波动率降低值为负表明波动率降低 期权价值提高。期权价值提高。 当标的资产价格接近执行价格的时候,波动率的稍稍改变都当标的资产价格接近执行价格的时候,波动率的稍稍改变都 将引起期权从实值与虚值之间的转换,因此期权趋于平值时,将引起期权从实值与虚值之间的转换,因此期权趋于平值时, 值最大。而对于深度实值或是深度虚值的期权,波动率的变值最大。而对于深度实值或是深度虚值的期权,波动率的变 动并不能引起期权价值太大的变动动并不能引起期权价值太大的变动, 值较低。值较低。 如果交易组合的如果交易组合的的绝对值很大,表明该组合的价
57、值会对波的绝对值很大,表明该组合的价值会对波 动率变化非常敏感,而动率变化非常敏感,而的绝对值很小时,表明资产波动率的绝对值很小时,表明资产波动率 的变化对交易组合价值的影响很小。的变化对交易组合价值的影响很小。 当距离到期的时间比较长,标的资产的波动率发生变动,标当距离到期的时间比较长,标的资产的波动率发生变动,标 的资产价格会有充分的时间发生改变,从而影响期权的价格,的资产价格会有充分的时间发生改变,从而影响期权的价格, 因此距离到期时间越长因此距离到期时间越长vega越大,当临近到期,即使波动率越大,当临近到期,即使波动率 变大,也已无足够时间让标的资产价格发生变化,因此当接变大,也已无
58、足够时间让标的资产价格发生变化,因此当接 近到期的时候近到期的时候vega值会迅速减少值会迅速减少。 VegaVega ()的特点)的特点 VegaVega ()的特点)的特点 vega与标的资产价格的关系与标的资产价格的关系 VegaVega ()的特点)的特点 vega与到期时间的关系与到期时间的关系 如同对冲如同对冲gamma风险一样,要改变投资组合的风险一样,要改变投资组合的Vega ,必须,必须 使用那些使用那些Vega不等于零的工具,比如期权。当调整期权头寸不等于零的工具,比如期权。当调整期权头寸 使证券组合处于使证券组合处于vega中性状态时,新期权头寸会同时改变证中性状态时,新
59、期权头寸会同时改变证 券组合的券组合的gamma值与值与delta值,因此,若套期保值者要使值,因此,若套期保值者要使 delta中性的证券组合同时达到中性的证券组合同时达到gamma中性和中性和vega中性,至中性,至 少要使用同一标的资产的两种期权。少要使用同一标的资产的两种期权。 VegaVega ()对冲)对冲 同样的,一个同样的,一个Gamma中性的交易组合一般不会是中性的交易组合一般不会是Vega中性,中性, 反之亦然。投资者要想使一个交易组合同时达到反之亦然。投资者要想使一个交易组合同时达到Gamma和和 Vega中性,就必须引入与标的产品有关的两种不同衍生产品中性,就必须引入与标的产
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年有机食品项目申请报告
- 2025年家电配线组件项目规划申请报告模板
- 2025年浮标式氧气吸入器项目申请报告
- 个人竞聘述职报告汇编15篇
- 销售辞职报告24篇
- 公司员工离职感谢信合集七篇
- 粮食安全心得体会【7篇】
- 2024年债券担保资产证券化项目合作协议3篇
- 学生的自我介绍(集锦15篇)
- 2024-2025学年高中化学 第1章 从实验学化学 第2节 化学计量在实验中的应用教学实录 新人教版必修1
- 2024年广州市南沙区初中语文毕业班模拟考试卷(附答案解析)
- 简单室内装修合同2024年
- 重庆江北国际机场有限公司招聘笔试题库2024
- 第11讲 地表形态与人类活动(高考一轮复习课件)
- 地下水动力学智慧树知到期末考试答案章节答案2024年长安大学
- GB/T 44143-2024科技人才评价规范
- 中国绿色算力发展研究报告(2024年)
- 环境管理与可持续发展管理制度
- 哈齐铁路客运专线无砟轨道测量监理实施细则
- DZ/T 0462.1-2023 矿产资源“三率”指标要求 第1部分:煤(正式版)
- 律师事务所文档排版格式指引
评论
0/150
提交评论