




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、耐高温透波复合材料树脂基体的最新研究进展摘要:本文综述了耐高温透波复合材料树脂基体的最新发展情况,介绍环氧树脂、有机硅树脂、BMI树脂等树脂在耐高温透波复合材料中的应用。树脂基体是决定复合材料性能的重要因素。关键字:耐高温、透波复合材料、树脂基体1、引言耐高温透波材料是保护航天飞行器在恶劣环境条件下通讯、遥测、制导、引爆等系统能正常工作的一种多功能介质材料,在运载火箭、飞船、导弹及返回式卫星等航天飞行器天线电气系统中得到广泛应用。耐高温透波材料通常分为两种:一种为无机材料,如氧化铝、二氧化硅、玻璃陶瓷、氯化硅、氮化硼等;另一种为耐热树脂基纤维复合材料。无机材料在厘米波范围内能满足雷达罩电气性能
2、的要求,使用性能良好。但对于毫米波(波长11000mm,频率0.3300GHz范围的电磁波)则存在较大的缺点,如强度低、罩壁较厚等。因此随着高载荷、高飞行速度战术导弹的发展,多选用耐热树脂基纤维复合材料作透波材料。树脂基纤维复台材料具有优良的电性能,介电常数(g)和介电损耗(tg)都很小,而且具有足够的力学强度和适当的弹性模量,是优良的透波复合材料。 透波复合材料是由增强纤维和树脂基体构成的,两者的电性能好才能成型出电性能好的透波材料。通常增强材料的力学性能和介电特性均优于树脂基体,所以复合材料的透波性能主要取决于树脂基体的性能。因此必须选择具有优良电性能的树脂基体,同时树脂在复合材料中也起胶
3、粘剂的作用,是决定复合材料耐热性的基本成分。本文综述耐高温复合材料用树脂基体的发展现状。2、树脂基体的性能和种类2.1性能要求 耐高温透波材料是高速精确制导航天器的基础,在导弹无线电系统中得到广泛应用,其主要特点是具有突出的耐热性、优异的介电性能(低介电常数和介电损耗)和优良的力学性能。高性能树脂基体是制备耐高温透波材料的关键和基础1。然而,已有的高性能树脂均在不同程度上存在不足,工业和科技进步又对透波材料的性能提出了更高的要求,所以高性能树脂基体的研发一直是学术界和工业界的工作热点和重点。2.2树脂基体种类 目前实际应用最广泛的还是纤维增强树脂基复合材料。树脂基体主要有传统的环氧树脂(EP)
4、、不饱和聚酯树脂(UP)、改性酚醛树脂(PF)以及近年来开始研究和应用的氰酸酯树脂(CE)、有机硅树脂、双马来酰亚胺树脂(BMI)、聚酰亚胺(PI)、聚四氟乙烯(PTFE)等新型的耐高温树脂。2.2.1环氧树脂(EP)2-6 EP树脂自20世纪50年代问世以来,以其优良的粘结性、力学性能和良好的工艺性而成为使用最广泛的树脂之一。但是,普通EP树脂作为耐热透波复合材料基体还存在韧性差、耐热性低、介电常数和损耗角正切大等缺点。因此,必须对普通EP树脂进行改性。主要改性方法有与高性能热固性树脂共聚、热塑性树脂改性、新型环氧树脂的合成及纳米改性等。 氰酸酯(CE)和双马来酰亚胺(BMI)树脂是用于改性
5、环氧树脂的两种主要热固性树脂,均具有优良的耐热性和介电性能。CE改性EP树脂通过醚化反应降低体系极性基团的含量,进而提高固化物的介电性能。此外,CE自身优异的性能以及EP与CE树脂在体系中形成互穿网络结构,使得CE改性EP体系具有比EP树脂固化物更高的湿热性能和抗冲击性能。BMI改性EP一般是以二元胺作为载体。通过二元胺与BMI的扩链反应所得到的中间体与环氧基团实现共聚,形成兼有两者优点的网络结构。赵丽梅等采用该方法对酚醛型EP进行改性。研究结果表明,改性树脂具有良好的力学性能,而热稳定性随着体系中BMI含量的增加而增强。例如,当体系中BMI含量分别为10和35时,改性EP体系分解15的温度由
6、330提高到405。Leu用双酚A和环氧氯丙烷反应制得短支链环氧树脂SCER,并将三烯丙基异氰酸酯与BMI的反应产物(TB)加入到SCER中,制得的改性EP树脂具有优良的综合性能,且随体系中TB含量的增加而增加。用于改性EP树脂的高性能热塑性树脂主要有聚苯醚(PPO)和聚酰亚胺(PI)。苏民社等采用降低PPO分子量的方法改进了PPO树脂与EP树脂的相容性,制得了PPOEP复合材料。与EP树脂相比,PPOEP复合材料的介电常数和损耗角正切分别由4.4和0.025降为3.9和0.008。PI改性EP时,一般采用共混或者用(聚)酰亚胺作为固化剂等两种方法,制得的PI改性EP树脂热性能、机械性能、介电
7、性能都得到了显著的提高。新型EP树脂的合成旨在从根本上获得高性能EP,包括四官能团EP、联苯EP、含磷EP等。许凯采用双萘酚一烯缩水甘油醚和双氰双胺合成了一种分子骨架中含有萘基的EP树脂(ENL)。与传统EP树脂相比,ENL具有很低的介电常数、高的耐热性和耐湿性。采用无机粒子改性是热固性树脂改性的一个重要趋势。朱兴松制备了EP蒙脱土(MMT)纳米复合体系,研究表明加入适量的MMT可以有效降低EP树脂的介电常数和损耗角正切时。张明艳等的研究也得出了相似的结果,并进一步指出MMT的加入延缓了损耗角正切随温度增加而增大的速率。此外,与未改性EP树脂相比,EPMMT复合材料的马丁耐热温度和冲击强度分别
8、提高了10和31.6。Yung的研究发现相对于EP树脂,MMT溴化EP杂化物的介电常数和损耗角正切值较低,且产物具有更好的热机械性能及热稳定性能。Wang等将八甲基倍半硅氧烷(P0SS)与含氟烯丙基醚进行反应,再与EP共混,得到的改性EP,介电常数从3.71下降到2.65,这是因为氟原子降低了体系的极化率,而POSS结构能够创造出更多的孔穴。2.2.2有机硅树脂7-8 有机硅树脂兼具无机化合物和有机聚合物的双重性能,具有优良的耐高低温性能、突出的介电性能及在高温高湿条件下的稳定性。有机硅树脂的缺点是机械强度较低,成型困难。通过用EP改性,可以引入环氧基、羟基等基团,有效提高有机硅树脂的综合性能
9、引。近年来,采用有机一无机杂化方法、纳米技术合成新型有机硅或对现有结构的有机硅进行改性逐渐成为发展趋势。 Kim等研究了有机硅氧烷树脂结构与介电性能的关系,研究表明材料的介电性能主要依赖于结构中的三维交联结构,高交联的有机硅氧烷树脂显示出高介电常数值及其对温度的稳定性。采用POSS改性有机硅树脂,可在不影响其介电性能的前提下制备耐热性能更佳的改性体系。闵春英采用溶胶一凝胶法制备出了SiO2杂化有机硅树脂,其具有较高的热稳定性,600仅失重3。2.2.3 BMI 树脂9-12BMI树脂是耐热树脂的典型代表,具有突出的耐热性、优良的机械性能和介电性能,因而作为高性能胶粘剂,先进复合材料树脂基体在航
10、空航天、电子信息、交通运输等尖 端领域得到了广泛应用,但是 BMI固化物脆性大、工艺性差。目前已经研发了多种BMI改性体系,可以基本满足当代透波复合材料的应用。目前所展开的研究主要是致力于获 得耐热性和介电性能更佳的BMI树脂,为武器装备的更新换代做准备。利用分子裁剪技术,设计与合成新型结构BMI的本征改性方法是实现上述目标的方法之一,例如 Hwang等分别合成了二环戊二烯基BMI 和二戊烯基BMI,比较了它们与 4,4,-二苯双马来酰亚胺甲烷性能,结果表明前者的介电常数和损耗角正切及吸湿率均低于BDM。但是,正如其他材料改性一样,本征改性方法与共聚、共混改性方法相比具有周期长、成本高、材料选
11、择性低的不足,因此通过选择合适的共聚物对BMI进行共聚共混改性一直是BMI改性的重要方法。近年来该方法的重点主要是设计与合成新型的共聚物,同时改性体系也由二元向多元体系变化。马艳用邻苯二甲酸二烯丙酯(DAP)和铝溶胶对BMI预聚体改性,得到了韧性、介电性能和热稳定性更优的改性BMI树脂。钟翔研究了BMI的预聚工艺和CE的预聚工艺对 BMICE共聚物介电性能的影响,研究结果表明,对于纯BMI未预聚体系,CE树脂预聚工艺对共聚固化物的介电性能尤其是介电常数有明显的改善,但对于BMI烯丙基双酚A预聚体系则不明显;对于CE未预聚体系,BMI预聚工艺可降低共聚固化物的介电常数,但增加了损耗角正切。Lia
12、ng等用双酚A型烯丙基环氧树脂以及环氧丙烯酸酯与BDM共聚,与未改性BMI树脂相比,在保持优良的介电性能、热性能及耐湿热性能的基础上,改性BMI预聚工艺对双马来酰亚胺氰酸酯共聚物介电性能的影响,树脂的冲击强度提高了2倍。此外,有机一无机复合杂化方法、纳米技术也应用于BMI改性,取得了良好的改性效果。如Gu等用硼酸铝晶须改性BMI树脂,研究结果表明适当含量的表面处理的硼酸铝能够提高树脂基体的力学、热学及介电性能。3、结论 突出的耐热性、优异的介电性能和良好的工艺性是耐高温有机透波材料用树脂基体必备的三大关键性能特征,如何使耐高温有机透波材料用树脂基体兼具这三大关键性能成为许多学者的工作目标。纵观
13、各种树脂体系的研究现状与发展趋势,可以发现,单一品种已经很难完全满足要求,“复合与杂化技术”以及“纳米技术”正成为设计与制备耐高温有机透波材料用树脂基体的两大重要途径,也成为该领域的发展趋势。参考文献 1夏文干高功率高透波材料的研究J高科技纤维与应用,2003,28(2):39 2赵丽梅,夏华,等双马来酰亚胺改性酚醛型环氧树脂的研究J功能材料,2007,38(3):4043LeuT&Structureandcharacterizationforconterminouslylinkedpolymerofshort-chainepoxyresinwitlltriallylisoeyanuratea
14、ndbismaleimideJJApplPolymSci,2006,102:2470 4苏民社,刘军,王玉红PPO环氧玻璃布覆铜板的研制J纤维复合材料,2002,3:205许凯,张奎含萘和脂环烃结构单元环氧树脂的固化反应及性质J高分子材料科学与工程,2005,21(4):264 6朱兴松,刘立柱,张国伟环氧树脂蒙脱土纳米复合材料的介电性能研究J绝缘材料,2005,(2):27 7郭中宝,刘杰民,范慧俐,等环氧改性有机硅树脂涂料耐温性能研究口化工新型材料,2007,35(4):578闵春英,等溶胶旅胶法制备Si02杂化有机硅树脂及其耐热性能研究J化学与黏合,2006,28(6):3729热性能研
15、究J化学与黏合,2006,28(6):37210H wang HJ , LiCH , Wang C S Synthesis and properties ofbismaleimide resin containing dicyclopentadiene or dipenteneJPolym Int,2006,55(11):134111马艳,陈宇飞,等聚双马来酰亚胺的合成及改性的研究J绝缘材料,2007,40(1):112钟翔屿,洪义强等预聚工艺对双马来酰亚胺氰酸酯共聚物介电性能的影响J航空材料学 报,2006,26(3):351聚乙烯(PE)简介1.1聚乙烯化学名称:聚乙烯英文名称:polye
16、thylene,简称PE结构式: 聚乙烯是乙烯经聚合制得的一种热塑性树脂,也包括乙烯与少量-烯烃的共聚物。聚乙烯是五大合成树脂之一,是我国合成树脂中产能最大、进口量最多的品种。1.1.1聚乙烯的性能1.一般性能聚乙烯为白色蜡状半透明材料,柔而韧,比水轻,无嗅、无味、无毒,常温下不溶于一般溶剂,吸水性小,但由于其为线性分子可缓慢溶于某些有机溶剂,且不发生溶胀。工业上为使用和贮存的方便通常在聚合后加入适量的塑料助剂进行造粒,制成半透明的颗粒状物料。PE易燃,燃烧时有蜡味,并伴有熔融滴落现象。聚乙烯的性质因品种而异,主要取决于分子结构和密度,也与聚合工艺及后期造粒过程中加入的塑料助剂有关。2.力学性
17、能PE是典型的软而韧的聚合物。除冲击强度较高外,其他力学性能绝对值在塑料材料中都是较低的。PE密度增大,除韧性以外的力学性能都有所提高。LDPE由于支化度大,结晶度低,密度小,各项力学性能较低,但韧性良好,耐冲击。HDPE支化度小,结晶度高,密度大,拉伸强度、刚度和硬度较高,韧性较差些。相对分子质量增大,分子链间作用力相应增大,所有力学性能,包括韧性也都提高。几种PE的力学性能见表1-1。表1-1 几种PE力学性能数据性能LDPELLDPEHDPE超高相对分子质量聚乙烯邵氏硬度(D)拉伸强度MPa拉伸弹性模量MPa压缩强度MPa缺口冲击强度kJm-2弯曲强度MPa414672010030012
18、.5809012174050152525055070152560702137400130022.540702540646730501508001003.热性能PE受热后,随温度的升高,结晶部分逐渐熔化,无定形部分逐渐增多。其熔点与结晶度和结晶形态有关。HDPE的熔点约为125137,MDPE的熔点约为126134,LDPE的熔点约为105115。相对分子质量对PE的熔融温度基本上无影响。PE的玻璃化温度(Tg)随相对分子质量、结晶度和支化程度的不同而异,而且因测试方法不同有较大差别,一般在-50以下。PE在一般环境下韧性良好,耐低温性(耐寒性)优良,PE的脆化温度(Tb)约为-80-50,随相
19、对分子质量增大脆化温度降低,如超高相对分子质量聚乙烯的脆化温度低于-140。PE的热变形温度(THD)较低,不同PE的热变形温度也有差别,LDPE约为3850(0.45MPa,下同),MDPE约为5075,HDPE约为6080。PE的最高连续使用温度不算太低,LDPE约为82100,MDPE约为105121,HDPE为121,均高于PS和PVC。PE的热稳定性较好,在惰性气氛中,其热分解温度超过300。PE的比热容和热导率较大,不宜作为绝热材料选用。PE的线胀系数约在(1530)10-5K-1之间,其制品尺寸随温度改变变化较大。几种PE的热性能见表1-2。表1-2几种PE热性能性能LDPELL
20、DPEHDPE超高相对分子质量聚乙烯熔点热降解温度(氮气)热变形温度(0.45MPa)脆化温度线性膨胀系数(10-5K-1)比热容J(kgK)-1热导率/ W(mK)-11051153003850-80-501624221823010.351201253005075-100-751251373006080-100-701116192523010.421902103007585-140-704.电性能PE分子结构中没有极性基团,因此具有优异的电性能,几种PE的电性能见表1-3。PE的体积电阻率较高,介电常数和介电损耗因数较小,几乎不受频率的影响,因而适宜于制备高频绝缘材料。它的吸湿性很小,小于0
21、.01(质量分数),电性能不受环境湿度的影响。尽管PE具有优良的介电性能和绝缘性,但由于耐热性不够高,作为绝缘材料使用,只能达到Y级(工作温度90)。表1-3聚乙烯的电性能性能LDPELLDPEHDPE超高相对分子质量聚乙烯体积电阻率/cm介电常数/Fm-1(106Hz)介电损耗因数(106Hz)介电强度/kVmm-110162.252.350.00052010162.202.300.0005457010162.302.350.0005182810172.350.0005355.化学稳定性PE是非极性结晶聚合物,具有优良的化学稳定性。室温下它能耐酸、碱和盐类的水溶液,如盐酸、氢氟酸、磷酸、甲酸
22、、醋酸、氨、氢氧化钠、氢氧化钾以及各类盐溶液(包括具有氧化性的高锰酸钾溶液和重铬酸盐溶液等),即使在较高的浓度下对PE也无显著作用。但浓硫酸和浓硝酸及其他氧化剂对聚乙烯有缓慢侵蚀作用。PE在室温下不溶于任何溶剂,但溶度参数相近的溶剂可使其溶胀。随着温度的升高,PE结晶逐渐被破坏,大分子与溶剂的作用增强,当达到一定温度后PE可溶于脂肪烃、芳香烃、卤代烃等。如LDPE能溶于60的苯中,HDPE能溶于8090的苯中,超过100后二者均可溶于甲苯、三氯乙烯、四氢萘、十氢萘、石油醚、矿物油和石蜡中。但即使在较高温度下PE仍不溶于水、脂肪族醇、丙酮、乙醚、甘油和植物油中。PE在大气、阳光和氧的作用下易发生
23、老化,具体表现为伸长率和耐寒性降低,力学性能和电性能下降,并逐渐变脆、产生裂纹,最终丧失使用性能。为了防止PE的氧化降解,便于贮存、加工和应用,一般使用的PE原料在合成过程中已加入了稳定剂,可满足一般的加工和使用要求。如需进一步提高耐老化性能,可在PE中添加抗氧剂和光稳定剂等。6.卫生性PE分子链主要由碳、氢构成,本身毒性极低,但为了改善PE性能,在聚合、成型加工和使用中往往需添加抗氧剂和光稳定剂等塑料助剂,可能影响到它的卫生性。树脂生产厂家在聚合时总是选用无毒助剂,且用量极少,一般树脂不会受到污染。PE长期与脂肪烃、芳香烃、卤代烃类物质接触容易引起溶胀,PE中有些低相对分子质量组分可能会溶于
24、其中,因此,长期使用PE容器盛装食用油脂会产生一种蜡味,影响食用效果。1.1.2聚乙烯的分类聚乙烯的生产方法不同,其密度及熔体流动速率也不同。按密度大小主要分为低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)。其中线性低密度聚乙烯属于低密度聚乙烯中的一种,是工业上常用的聚乙烯,其他分类法有时把MDPE归类于HDPE或LLDPE。按相对分子质量可分为低相对分子质量聚乙烯、普通相对分子质量聚乙烯、超高相对分子质量聚乙烯。按生产方法可分为低压法聚乙烯、中压法聚乙烯和高压法聚乙烯。1.低密度聚乙烯英文名称: Low density polye
25、thylene,简称LDPE低密度聚乙烯,又称高压聚乙烯。无味、无臭、无毒、表面无光泽、乳白色蜡状颗粒,密度0.9100.925g/cm3,质轻,柔性,具有良好的延伸性、电绝缘性、化学稳定性、加工性能和耐低温性(可耐-70),但力学强度、隔湿性、隔气性和耐溶剂性较差。分子结构不够规整,结晶度较低(55%65%),熔点105115。LDPE可采用热塑性成型加工的各种成型工艺,如注射、挤出、吹塑、旋转成型、涂覆、发泡工艺、热成型、热风焊、热焊接等,成型加工性好。主要用作农膜、工业用包装膜、药品与食品包装薄膜、机械零件、日用品、建筑材料、电线、电缆绝缘、吹塑中空成型制品、涂层和人造革等。2.高密度聚
26、乙烯英文名称:High Density Polyethylene,简称HDPE高密度聚乙烯,又称低压聚乙烯。无毒、无味、无臭,白色颗粒,分子为线型结构,很少有支化现象,是典型的结晶高聚物。力学性能均优于低密度聚乙烯,熔点比低密度聚乙烯高,约125137,其脆化温度比低密度聚乙烯低,约-100-70,密度为0.9410.960g/cm3。常温下不溶于一般溶剂,但在脂肪烃、芳香烃和卤代烃中长时间接触时能溶胀,在70以上时稍溶于甲苯、醋酸中。在空气中加热和受日光影响发生氧化作用。能耐大多数酸碱的侵蚀。吸水性小,具有良好的耐热性和耐寒性,化学稳定性好,还具有较高的刚性和韧性,介电性能、耐环境应力开裂性
27、亦较好。HDPE可采用注射、挤出、吹塑、滚塑等成型方法,生产薄膜制品、日用品及工业用的各种大小中空容器、管材、包装用的压延带和结扎带,绳缆、鱼网和编织用纤维、电线电缆等。3.线性低密度聚乙烯英文名称:Linear Low Density Polyethylene,简称LLDPE线形低密度聚乙烯被认为是“第三代聚乙烯”的新品种,是乙烯与少量高级-烯烃(如丁烯-1、己烯-1、辛烯-1、四甲基戊烯-1等)在催化剂作用下,经高压或低压聚合而成的一种共聚物,为无毒、无味、无臭的乳白色颗粒,密度0.9180.935g/cm3。与LDPE相比,具有强度大、韧性好、刚性大、耐热、耐寒性好等优点,且软化温度和熔
28、融温度较高,还具有良好的耐环境应力开裂性,耐冲击强度、耐撕裂强度等性能。并可耐酸、碱、有机溶剂等。LLDPE可通过注射、挤出、吹塑等成型方法生产农膜、包装薄膜、复合薄膜、管材、中空容器、电线、电缆绝缘层等。由于不存在长支链,LLDPE的 6570用于制作薄膜。4.中密度聚乙烯英文名称:Medium density polyethylene,简称MDPE中密度聚乙烯是在合成过程中用-烯烃共聚,控制密度而成。MDPE的密度为0.9260.953g/cm3,结晶度为7080,平均相对分子质量为20万,拉伸强度为824MPa,断裂伸长率为5060,熔融温度126135,熔体流动速率为0.135g10m
29、in,热变形温度(0.46MPa)4974。MDPE最突出的特点是耐环境应力开裂性及强度的长期保持性。MDPE可用挤出、注射、吹塑、滚塑、旋转、粉末成型加工方法,生产工艺参数与HDPE和LDPF相似,常用于管材、薄膜、中空容器等。5.超高相对分子质量聚乙烯英文名称:ultra-high molecular weight polyethylene,简称UHMWPE超高相对分子质量聚乙烯冲击强度高,耐疲劳,耐磨,是一种线型结构的具有优异综合性能的热塑性工程塑料。其相对分子质量达到300600万,密度0.9360.964g/cm3,热变形温度(0.46MPa)85,熔点130136。UHMWPE因相
30、对分子质量高而具有其他塑料无可比拟的优异性能,如耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能,广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于超高相对分子质量聚乙烯优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用,而且,超高相对分子质量聚乙烯耐低温性能优异,在-40时仍具有较高的冲击强度,甚至可在-269下使用。超高相对分子质量聚乙烯纤维的复合材料在军事上已用作装甲车辆的壳体、雷达的防护罩壳、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。由于超高相对分子质量聚乙烯熔融状态的粘度高达108Pas,流动
31、性极差,其熔体流动速率几乎为零,所以很难用一般的机械加工方法进行加工。近年来,通过对普通加工设备的改造,已使超高相对分子质量聚乙烯由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其他特殊方法的成型。6.茂金属聚乙烯茂金属聚乙烯(mPE)是近年来迅速发展的一类新型高分子树脂,其相对分子质量分布窄,分子链结构和组成分布均一,具有优异的力学性能和光学性能,已被广泛应用于包装、电气绝缘制品等。1.1.3聚乙烯的成型加工PE的熔体粘度比PVC低,流动性能好,不需加入增塑剂已具有很好的成型加工性能。前文已介绍了各类聚乙烯可采用的成型加工方法,下面主要介绍在成型过程中应注意的几个问题。聚乙烯属于结晶性塑
32、料,吸湿小,成型前不需充分干燥,熔体流动性极好,流动性对压力敏感,成型时宜用高压注射,料温均匀,填充速度快,保压充分。不宜用直接浇口,以防收缩不均,内应力增大。注意选择浇口位置,防止产生缩孔和变形。PE的热容量较大,但成型加工温度却较低,成型加工温度的确定主要取决于相对分子质量、密度和结晶度。LDPE在180左右, HDPE在220左右,最高成型加工温度一般不超过280。熔融状态下,PE具有氧化倾向,因而,成型加工中应尽量减少熔体与空气的接触及在高温下的停留时间。PE的熔体粘度对剪切速率敏感,随剪切速率的增大下降得较多。当剪切速率超过临界值后,易出现熔体破裂等流动缺陷。制品的结晶度取决于成型加
33、工中对冷却速率的控制。不论采取快速冷却还是缓慢冷却,应尽量使制品各部分冷却速率均匀一致,以免产生内应力,降低制品的力学性能。收缩范围和收缩值大(一般成型收缩率为1.55.0),方向性明显,易变形翘曲,冷却速度宜慢,模具设冷料穴,并有冷却系统。软质塑件有较浅的侧凹槽时,可强行脱模。1.1.4聚乙烯的改性聚乙烯属非极性聚合物,与无机物、极性高分子相容性弱,因此其功能性较差,采用改性可提高PE的耐热老化性、高速加工性、冲击强度、粘接性、生物相容性等性质。常用的改性方法包括物理改性和化学改性。1.物理改性物理改性是在PE基体中加入另一组分(无机组分、有机组分或聚合物等)的一种改性方法。常用的方法有增强
34、改性、共混改性、填充改性。(1)增强改性 增强改性是指填充后对聚合物有增强效果的改性。加入的增强剂有玻璃纤维、碳纤维、石棉纤维、合成纤维、棉麻纤维、晶须等。自增强改性也属于增强改性的一种。自增强改性。所谓自增强就是使用特殊的加工成型方法,使得材料内部组织形成伸直链晶体,材料内部大分子晶体沿应力方向有序排列,材料的宏观强度得到大幅度提高,同时分子链有序排列将使结晶度提高,从而使材料的强度进一步提高,由于所形成的增强相与基体相的分子结构相同,因而不存在外增强材料中普遍存在的界面问题。如采用超高相对分子质量聚乙烯(UHMPE)纤维增强LDPE,在加热加压成型的条件下,可以形成良好的界面,最大限度发挥
35、基体和纤维的强度。纤维增强改性。纤维增强聚合物基复合材料由于具有比强度高、比刚度高等优点而得到广泛应用。如采用经KH-550偶联剂处理的长玻璃纤维(LGF)与PE复合制备的PELGF复合材料,当LGF加入量为3O(质量分数)、长度约为35mm时,复合材料的拉伸强度和冲击强度分别为52.5MPa和52kJm。晶须改性。晶须的加入能够大幅度提高HDPE材料的力学性能,包括短期力学性能及耐长期蠕变性能。晶须对HDPE材料的增强作用主要归因于它们之间的良好界面粘接,同时刚性的晶须则能够承担较大的外界应力使复合材料的模量得到提高。纳米粒子增强改性。少量无机刚性粒子填充PE可同时起到增韧与增强的作用。如将
36、表面处理过的纳米SiO2粒子填充mLLDPE-LDPE,SiO2纳米粒子均匀分散于基材中,与基材形成牢固的界面结合,当填充质量分数为2时,拉伸强度、断裂伸长率分别提高了13.7MPa和174.9。(2)共混改性 共混改性主要目的是改善PE的韧性、冲击强度、粘接性、高速加工性等各种缺陷,使其具有较好的综合性能。共混改性主要是向PE基体中加入另一种聚合物,如塑料类、弹性体类等聚合物,以及不同种类的PE之间进行共混。PE系列的共混改性。单一组分的PE往往很难满足加工要求,而通过不同种类PE之间的共混改性可以获得性能优良的PE材料。如通过LDPE与LLDPE共混,解决了LDPE因大量添加阻燃剂和抗静电
37、剂等助剂造成力学性能急剧降低的问题;LLDPE与HDPE共混后可以提高产品的综合性能。PE与弹性体的共混改性。弹性体具有低的表面张力、较强的极性、突出的增韧作用,因此与PE共混后,既能保持PE的原有性能,同时也可以制备出具有综合优良性能的PE。如LDPE-聚烯烃弹性体(POE)共混物,当POE的质量分数为3O时,共混体系的拉伸强度达到最大值,为21.5 MPa。PE与塑料的共混改性。聚乙烯具有良好的韧性,但制品的强度和模量较低,与工程塑料等共混可提高复合体系的综合力学性能。但PE和这类高聚物的界面问题也是影响其共混物性能的主要原因,因此通常需要加入界面相容剂以提高共混物的力学性能。(3)填充改
38、性 填充改性是在PE基质中加入无机填料或有机填料,一方面可以降低成本达到增重的目的,另一方面可提高PE的功能性,如电性能、阻燃性能等,但同时对复合材料的力学性能和加工性能带来一定程度的影响。无论是无机填料还是有机填料,填料与PE基体的相容性和界面粘接强度是PE填充改性必须面临的问题,而PE是非极性化合物,与填料相容性差,因此,必须对填料进行表面处理。填料的表面处理一般采用物理或化学方法进行处理,在填料表面包覆一层类似于表面活性剂的过渡层,起“分子桥”的作用,使填料与基体树脂间形成一个良好的粘接界面。常用的填料表面处理技术有:表面活性剂或偶联剂处理技术、低温等离子体技术、聚合填充技术和原位乳液聚
39、合技术等。PE中填充木粉、淀粉、废纸粉、滑石粉、碳酸钙等一类填料,不仅可以改善PE的性能,同时也具有十分重要的健康环保意义。2.化学改性化学改性的方法主要有接枝改性、共聚改性、交联改性、氯化及氯磺化改性和等离子体改性处理等方法。其原理是通过化学反应在PE分子链上引入其他链节和功能基团,由此提高材料的力学性能、耐侯性能、抗老化性能和粘接性能等。(1)接枝改性 接枝改性是指将具有各种功能的极性单体接枝到PE主链上的一种改性方法。接枝改性后的PE不但保持了其原有特性,同时又增加了其新的功能。常用的接枝单体有丙烯酸(AA)、马来酸酐(MA)、马来酸盐、烯基双酚A醚和活性硅油等。接枝改性的方法主要有溶液
40、法、固相法、熔融法、辐射接枝法、光接枝法等。(2)共聚改性 共聚改性是指通过共聚反应将其他大分子链或官能团引入到PE分子链中,从而改变PE的基本性能。主要改性品种有乙烯-丙烯共聚物(塑料)、EVA、乙烯-丁烯共聚物、乙烯-其他烯烃(如辛烯POE、环烯烃)共聚物、乙烯-不饱和酯共聚物(EAA、 EMAA 、EEA、EMA、EMMA、EMAH)等。通过共聚反应,可以改变大分子链的柔顺性或使原来的基团带有反应性官能团,可以起到反应性增容剂的作用。(3)交联改性 交联改性是指在聚合物大分子链间形成了化学共价键以取代原来的范德华力,由此极大地改善了诸如耐热性、耐磨性、弹性形变、耐化学药品性及耐环境应力开裂性等一系列物理化学性能,适于作大型管材、电缆电线以及滚塑制品等。聚乙烯的交联改性方法包括过氧化物交联(化学交联)、高能辐射交联、硅烷接枝交联、紫外光交联。(4)氯化及氯磺化改
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保护地球题库及答案
- 版图知识题目及答案
- 2025年职业技能培训在乡村振兴中的农村教育质量提升策略研究报告
- 安全员岗位试题及答案
- 罕见病药物研发激励政策与产业政策协同推进报告
- 智能化环境监测在环境法律法规执行中的数据质量控制与监督
- 安全技术概论试题及答案
- 针对2025年运动健身人群的健康功能性饮料市场前景研究报告
- 2025年乡村文化旅游与乡村旅游特色村寨建设报告
- 产妇护理技能培训课件
- 车辆保险服务招投标书范本
- 2022年人教PEP版小学四年级英语下册期末试卷及答案
- GB 11564-2024机动车回复反射装置
- 《牛津英汉词典》全集完整版TXT电子书
- 2024反诈知识竞赛考试题库及答案(三份)
- 2024年【每周一测】第四周语文五年级下册基础练习题(含答案)
- 阳光食品APP培训考核题库(含答案)食品生产企业端
- 剧本杀店买卖协议
- 羽毛球教案18课时完整版
- JT-T-1240-2019城市公共汽电车车辆专用安全设施技术要求
- 2024届湖北省鄂东南联盟数学高一下期末达标检测模拟试题含解析
评论
0/150
提交评论