有机无机化学化工热力学教学课件reviewFluidmechanics._第1页
有机无机化学化工热力学教学课件reviewFluidmechanics._第2页
有机无机化学化工热力学教学课件reviewFluidmechanics._第3页
有机无机化学化工热力学教学课件reviewFluidmechanics._第4页
有机无机化学化工热力学教学课件reviewFluidmechanics._第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 Review for Chapter 2,3,4,5 Fluid mechanics I. Fluid statics and its application II. Fluid dynamics and its application 2 I. Fluid statics and its application 1. Density 2. Pressure 3. Equation of hydrostatic equilibrium 4. Application of hydrostatic equilibrium 3 1. Density = f (T, P) Usually soli

2、dliquidgas Unit of density: SI unit: kg/m3 cgs unit: g/cm3 fps unit: lb/ft3 4 2. Pressure Unit of pressure: SI unit: Pa (N/m2) others: atm, mmHg, mH2O, kgf/cm2, bar, at, psi (lbf/in2) Absolute pressure Gauge pressure Degree of vacuum(or vacuum) 5 3. Equation of hydrostatic equilibrium )( ba ab ZZg p

3、p (2.4) 0dZgdp(2.2) 6 4. Application of hydrostatic equilibrium 4.1 Barometer 0dZ RT gM p dp (2.6) RT ZZgM p p ab a b )( exp(2.7) 7 4.2 Manometers (液压计) U-tube manometer Differential manometer Inclined manometer Series manometer 8 4.3 Measurement of liquid level 4.4 Liquid seal of equipment 9 II. Fl

4、uid dynamics and its application 1. Potential flow and viscous flow 2.Viscosity of fluid 3. Rheological properties of fluids 4. Laminar flow and turbulent flow 5. Boundary layer content of chapter 3 10 6. Continuity equation 7. Bernoulli equation 8. Design of piping system content of chapter 4,5 11

5、1. Potential flow and viscous flow Potential flow 势流 Viscous flow 粘性流 12 2.Viscosity of fluid Viscosity: viscosity and kinematic viscosity Unit: Pa.s P, cP m2/s St, cSt Viscosities of liquids and gases 13 3. Rheological properties of fluids 了解牛顿型流体和非牛顿型流体的流变图 14 4. Laminar flow and turbulent flow La

6、minar turbulence Re4000 Regular,parallel No lateral mixing or crosscurrent No eddy irregular, mixing Eddy and vortice criterion motion 15 Laminar turbulence Shear stress Velocity distribution Average velocity Boundary layer 16 Laminar turbulence Kinetic correction factor Momentum correction factor F

7、anning friction factor 17 5. Boundary layer (1). Concept of BL (2). Development of boundary layer on a flat plate and in a pipe (3). Separation of BL: wake formation, form friction 18 6. Continuity equation the important special case: incompressible fluid flow in circular pipe SVSVSVm bbbaaa 2 a b b

8、 a D D V V 19 7. Bernoulli equation * * f bb b b p aa a a h V gZ p W V gZ p 22 22 20 (1). Choose datum plate. (2). Choose upstream station and downstream station. (3). The equation can be used for compressible fluid when the change of pressure is less than 20%. (4). The equation can be used in unste

9、ady state for any moment. (5). Hydrostatic equilibrium is a special case of Bernoulli equation. 21 (6). Each term in the Bernoulli equation has the same unit: J/kg (7). Static pressure energy, Potential energy, Kinetic energy(velocity head) (8). Energy delivered to the fluid: Wp (J/kg) power deliver

10、ed to the fluid: m Wp (W) shaft work: Wp (9). Friction loss: hf (J/kg) pressure drop: ps (Pa) 22 Total friction = skin friction + form friction 2 4 2 V KKK D L fh fecf 23 Fanning friction factor f Laminar flow Re4000 Re 1616 VD f Hydraulically smooth pipe Hydraulically rough pipe Complete turbulent

11、flow Transition region 2100Re4000 Ref D k fRe, k f D 24 noncircular channels: equivalent diameter Deq hydraulic radius rH 25 Expansion loss coefficient: Ke 2 1 b a e S S K For outlet (exit) Ke = 1 Contraction loss coefficient: Kc For turbulent flow, a b c S S K14 . 0 For Inlet(entrance) Kc=0.5 26 Lo

12、ss factor for fitting: Kf 2 4 2 ae ff V D L fh Equivalent length: Le Table 5.1 2 2 a fff V Kh (5.71) 27 8. Design of piping system (1). Compound pipes in series (a). Given diameter, length, velocity(or flow rate). Calculate pressure drop, energy delivered by pump (b). Given diameter, length, pressur

13、e drop. Calculate velocity.(trial and error) (c). Given length, flow rate, pressure drop. Calculate diameter (trial and error). 28 (a) 2. Compound pipes in parallel 21ffBfA hhh 21 qqq J/kg 29 (b) fC CC C C fB BB B B h V gZ p h V gZ p 22 22 CB qqq 30 5.6. A liquid with a specific gravity of 2.6 and a

14、 viscosity of 2.0 cP flows through a smooth pipe of unknown diameter, resulting in a pressure drop of 0.183 lbf/in.2 for 1.73 mi(英里,1km = 0.62137mi). What is the pipe diameter in inches if the mass rate of flow is 7,000 lb/h? 31 5.7. Water flows through an 8-in. steel pipe at an average velocity of

15、6 ft/s. Downstream the pipe divides into an 8-in. main and a 2-in. bypass. The equivalent length of the bypass is 22 ft; the length of the 8-in. pipe in the bypassed section is 16 ft. Neglecting entrance and exit losses, what fraction of the total water flow passes through the bypass? 32 5.8. A stee

16、l pipe 2 ft in diameter carries water at about 15 ft/s. If the pipe has a roughness of 0.0003 ft, could the capacity be increased by inserting a smooth plastic liner that reduces the inside diameter to 1.9 ft? Calculate the change in pressure drop for the same flow and the change in capacity for a f

17、ixed pressure drop. For water, viscosity is 1cp, and density is 1000kg/m3. 33 5.10. A reverse-osmosis(反渗透) unit for purifying brackish water has about 900,000 hollow fibers that permit the diffusion of water but reject most of the salt. The fibers are 85 m in outside diameter, 42m in inside diameter, and about 3 ft long. The average flow through the tubes is 2,000 gal of water every 24 h when the feed pressure is 400 psig. What is the pressure drop within an individual fiber from the feed end to the discharge end

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论