热学第四章大学物理_第1页
热学第四章大学物理_第2页
热学第四章大学物理_第3页
热学第四章大学物理_第4页
热学第四章大学物理_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、热学第四章大学物理1 第四章第四章 热力学第二定律热力学第二定律 l 自然过程的方向性自然过程的方向性( () ) l 不可逆过程的相互依存不可逆过程的相互依存 l 热力学第二定律热力学第二定律( () ) l 热力学概率与自然过程的方向性热力学概率与自然过程的方向性 l 玻尔兹曼熵公式与熵增加原理玻尔兹曼熵公式与熵增加原理 l 可逆过程可逆过程( () ) l 克劳修斯熵公式(克劳修斯熵公式(* *) l 温熵图(温熵图(* *) l 熵和能量退化(熵和能量退化(* *) l 耗散结构介绍(耗散结构介绍(* *) 热学第四章大学物理2 第四章第四章: : 热力学第二定律热力学第二定律 热一律

2、热一律一切热力学过程都应满足能量守一切热力学过程都应满足能量守 恒。但满足能量守恒的过程是否恒。但满足能量守恒的过程是否 一定都能进行一定都能进行? ? 热二律热二律满足能量守恒的过程不一定都能满足能量守恒的过程不一定都能 进行进行! !过程的进行还有个方向性过程的进行还有个方向性 的问题。的问题。 热学第四章大学物理3 例例1 1功热转换的方向性功热转换的方向性 功功 热热 可以自动地进行可以自动地进行 ( (如摩擦生热、焦耳实验如摩擦生热、焦耳实验) ) 热热 功功 不可以自动地进行不可以自动地进行 (焦耳实验的逆过程)(焦耳实验的逆过程) 例例2 2热传导的方向性热传导的方向性 热量可以

3、自动地从高温物体传向低温热量可以自动地从高温物体传向低温 物体物体, ,但相反的过程却不能发生。但相反的过程却不能发生。 热学第四章大学物理4 实际上实际上,“,“一切与热现象有关的自然过程(不受外界一切与热现象有关的自然过程(不受外界 干预的过程,例如孤立系统内部的过程)都是不可干预的过程,例如孤立系统内部的过程)都是不可 逆的,都存在一定的方向性逆的,都存在一定的方向性-存在着时间箭头存在着时间箭头”. . 又如,生命过程是不可逆的又如,生命过程是不可逆的: : 出生出生童年童年少年少年青年青年中年中年 老年老年八宝山八宝山 不可逆不可逆! ! “今天的你我今天的你我 怎能重复怎能重复 过

4、去的故事过去的故事!”!” 例例3. 3. 气体自由膨胀的方向性气体自由膨胀的方向性 气体自动膨胀是可以进行的气体自动膨胀是可以进行的, ,但自动收缩但自动收缩 的过程是不可能的的过程是不可能的. . 热学第四章大学物理5 各种实际宏观过程的方向性都是相互依存的。各种实际宏观过程的方向性都是相互依存的。 相互依存相互依存: :一种过程的方向性存在一种过程的方向性存在( (消失消失),), 则另一过程的方向性也存在则另一过程的方向性也存在( (消失消失) . ) . 功热转换方向性消失功热转换方向性消失热传导方向性消失热传导方向性消失 热源热源T T0 0 Q Q A A T T0 0TT T

5、T 低温低温T T0 0 高温高温T T Q Q 热学第四章大学物理6 热传导方向性消失热传导方向性消失功热转换方向性消失功热转换方向性消失 高温热源高温热源T T1 1 低温热源低温热源T T2 2 T T2 2 T T1 1 Q Q2 2 Q Q1 1 Q Q2 2 A A 热源热源T T1 1 A A Q Q1 1Q Q2 2 热学第四章大学物理7 功热转换方向性消失功热转换方向性消失气体可以自动压缩气体可以自动压缩 热源热源T T0 0 Q Q A A 热热 源源 T T0 0 Q Q 导致导致“气体可以气体可以 自动压缩自动压缩” 热学第四章大学物理8 一一. .热力学第二定律的表述

6、热力学第二定律的表述 (clausius,1850)表述表述: : 其其唯一效果唯一效果是热全部转变为功的过程是不可能的是热全部转变为功的过程是不可能的. . 理想气体等温膨胀过程是把热全部变成了功理想气体等温膨胀过程是把热全部变成了功, ,但但 伴随了其它变化伴随了其它变化( (体积膨胀体积膨胀).). 热力学第二定律以否定的语言说出一条确定的规律热力学第二定律以否定的语言说出一条确定的规律. . 热量不能自动地从低温物体传向高温物体热量不能自动地从低温物体传向高温物体. . 或说或说“其其唯一效果唯一效果是热量从低温物体传向高温物体是热量从低温物体传向高温物体 的过程是不可能发生的的过程是

7、不可能发生的”. . (Kelvin, 1851)表述表述: : 热机是把热转变成了功,但有了其它变化(热热机是把热转变成了功,但有了其它变化(热 量从高温热源传给低温热源量从高温热源传给低温热源. . 热学第四章大学物理9 开尔文表述的另一说法是(结合热机)开尔文表述的另一说法是(结合热机) : : 第二类永动机第二类永动机( ( 又称单热源热机又称单热源热机, ,其效率其效率 =1,=1, 即热量全部转变成功即热量全部转变成功) )是不可能制成的是不可能制成的. . 热机必须循环作功,这就至少要热机必须循环作功,这就至少要 有两个温度不同的热源。有两个温度不同的热源。 为什么?为什么? 3

8、.3.克劳修斯叙述与开尔文叙述是完全等效的克劳修斯叙述与开尔文叙述是完全等效的. . 利用利用海水温差可以发电吗?海水温差可以发电吗? 热学第四章大学物理10 二热力学第二定律的微观意义二热力学第二定律的微观意义 反映:大量分子的运动总是沿着无序程度增加的方向发展。反映:大量分子的运动总是沿着无序程度增加的方向发展。 T T2 2T T1 1 动能分布动能分布 较有序较有序 T TT T 动能分布动能分布 更无序更无序 机械能(电能)机械能(电能) 热能热能 (有序运动(有序运动 无序运动)无序运动) 自由膨胀自由膨胀 位置较有序位置较有序位置更无序位置更无序 整洁的宿舍整洁的宿舍 杂乱的宿舍

9、杂乱的宿舍 注意:热力学第二定律的适用条件注意:热力学第二定律的适用条件 (1) (1) 适用于大量分子的系统,是统计规律。适用于大量分子的系统,是统计规律。 (2)(2)适用于孤立系统适用于孤立系统 热学第四章大学物理11 4.4 4.4 热力学概率热力学概率 与自然过程的方向性与自然过程的方向性 怎样定量地描写状态的无序性和过程的方向性?怎样定量地描写状态的无序性和过程的方向性? (以气体自由膨胀为例来说明)(以气体自由膨胀为例来说明) 将隔板拉开后将隔板拉开后, , 只表示只表示A,BA,B中各有多少个分子中各有多少个分子 -称为宏观状态称为宏观状态; ; 表示出表示出A,BA,B中各是

10、哪些分子中各是哪些分子 ( (分子的微观分布分子的微观分布) ) - -称为微观状态称为微观状态 热学第四章大学物理12 左左4 4,右,右0 0,微观状态数,微观状态数 1 1 左左3 3,右,右1 1, 微观状态数微观状态数 4 4 左左2 2,右,右2 2,微观状态数,微观状态数 6 6 左左1 1,右,右3 3, 微观状态数微观状态数 4 4 左左0 0,右,右4 4,微观状态数,微观状态数 1 1 热学第四章大学物理13 4 4个粒子分布个粒子分布 左左4 4 右右0 0 左左3 3 右右1 1 左左2 2 右右2 2 左左1 1 右右3 3 左左0 0 右右4 4 0 0 1 1

11、2 2 3 3 4 4 5 5 6 6 总微观状态数总微观状态数16: 16: 左左4 4右右0 0 和和 左左0 0右右4 4概率概率 各为各为 1/161/16; 左左3 3右右1 1和和 左左1 1右右3 3概率概率 各为各为 1/41/4; 左左2 2右右2 2概率概率 为为 6/16. 6/16. 按统计理论的基本假设:对于孤立系统按统计理论的基本假设:对于孤立系统, , 各微观状态出现的概率是相同的各微观状态出现的概率是相同的. . 热学第四章大学物理14 N=10N=1023 23 N/2N/2N N n n l孤立系统总是从非平衡态向平衡态过渡。孤立系统总是从非平衡态向平衡态过

12、渡。 与平衡态的微小偏离,就是涨落(始终存在)。与平衡态的微小偏离,就是涨落(始终存在)。 两侧粒子数相同时热力学概率两侧粒子数相同时热力学概率最大,对应平衡态最大,对应平衡态. . 对应微观状态数目多的宏观状态对应微观状态数目多的宏观状态, , 其出现的概率其出现的概率 大。大。 N N:左侧粒子数:左侧粒子数 N=10N=1023 23 热学第四章大学物理15 某一宏观状态对应的微观状态数叫该宏观状态的热力学概率某一宏观状态对应的微观状态数叫该宏观状态的热力学概率 . . 全部分子自动收缩到左边的全部分子自动收缩到左边的 当分子数当分子数 N=4 N=4 时时, , 热力学概率热力学概率

13、=(1/16)=1/2=(1/16)=1/24 4. . 当分子数当分子数 N=NN=NA A(1(1摩尔摩尔) )时时, , 热力学概率热力学概率 0 2 1 2 1 23 106 A N : : 这种宏观状态虽原则上可出现这种宏观状态虽原则上可出现, ,但实际上不可能出现但实际上不可能出现. . 6 10 6 10 1 6 106 10 1 6 10632. 3 2 1 7 102 2 1 0 自然过程的方向性的定量描述自然过程的方向性的定量描述: : “热力学概率总是沿增大的方向发展热力学概率总是沿增大的方向发展”. . 宏观状态出现的热力学概率:宏观状态出现的热力学概率: 热学第四章大

14、学物理16 4.5 4.5 玻耳兹曼熵公式与熵增加原理玻耳兹曼熵公式与熵增加原理 自然过程的方向性是自然过程的方向性是 小小 大大 ( (微观定量表示微观定量表示) ) 玻耳兹曼引入了熵玻耳兹曼引入了熵 S S 此式称玻耳兹曼熵公式此式称玻耳兹曼熵公式, ,式中是玻耳兹曼常数式中是玻耳兹曼常数. . 熵熵( (和和 一样一样) )的微观意义也是的微观意义也是: : 系统内分子热运动的无序性的一种量度系统内分子热运动的无序性的一种量度. . S = klnS = kln 在孤立系统中进行的自然过程总是沿熵增加的在孤立系统中进行的自然过程总是沿熵增加的 方向进行,即方向进行,即 S S 0 0 这

15、称为熵增加原理。这称为熵增加原理。 1, 1 SV 2, 2 SV 算理想气体绝热自由膨胀算理想气体绝热自由膨胀 ( (孤立系统中进行的自然孤立系统中进行的自然 过程过程) )熵的增加量:熵的增加量: 1 2 12 12 ln )ln(ln k k SSS 有序有序 无序无序 ( (微观定性表示微观定性表示) ) 热学第四章大学物理17 在前面在前面,4,4个分子时个分子时, ,当体积增加到当体积增加到2 2倍时倍时, , 微观状态数增为微观状态数增为 倍倍; ; 42 因为初、末态因为初、末态 T T 相同相同, ,分子的速度分布不变分子的速度分布不变, , 只有位置分布改变只有位置分布改变

16、, , 可以只按位置分布计算可以只按位置分布计算 热力学概率热力学概率。 1 2 V V 现在现在, N, N个分子时个分子时, ,当体积增加到当体积增加到 倍时倍时, , 微观状态数增为微观状态数增为 倍倍; ; N V V 1 2 N V V 1 2 1 2 0ln lnln 1 2 1 2 1 2 1 2 V V R V V kN V V kkS A N A 热学第四章大学物理18楼塌熵增楼塌熵增 热学第四章大学物理19 对熵的本质的这一认识对熵的本质的这一认识, ,现已远远超出分子运现已远远超出分子运 动的领域,如对信息也用熵的概念来分析研究。动的领域,如对信息也用熵的概念来分析研究。

17、 整洁的宿舍整洁的宿舍 杂乱的宿舍杂乱的宿舍 热力学概率小热力学概率小热力学概率大热力学概率大 玻耳兹曼熵小玻耳兹曼熵小 玻耳兹曼熵大玻耳兹曼熵大 信息量大信息量大信息量小信息量小 如果定义一个信息熵,而且信息熵如果定义一个信息熵,而且信息熵 也是沿着增大的方向发展的话,也是沿着增大的方向发展的话, 信息熵小信息熵小信息熵大信息熵大 信息量越大,信息熵越小信息量越大,信息熵越小 - 信息是负熵!信息是负熵! 热学第四章大学物理20 4.6 4.6 可逆过程可逆过程 (reversible process)(reversible process) 可可逆过程是这样一种过程逆过程是这样一种过程,

18、,它的每一步都可以沿相反的方向进它的每一步都可以沿相反的方向进 行行, ,而当系统沿相反的方向回到原状态时而当系统沿相反的方向回到原状态时, ,外界也恢复到原状态外界也恢复到原状态. . ( (即即 系统和外界都恢复了原状系统和外界都恢复了原状) ) 如不可能使系统和外界都完全复原如不可能使系统和外界都完全复原, ,则此过程叫做不可逆过程则此过程叫做不可逆过程. . 一切自然过程一切自然过程( (实际宏观过程实际宏观过程) )都是不可逆过程都是不可逆过程. . 这是因为自然过程:这是因为自然过程:(1)(1)有摩擦损耗有摩擦损耗 (2)(2)是非准静态过程是非准静态过程 无摩擦无摩擦+ +准静

19、态准静态 摩擦是功变热的过程,摩擦是功变热的过程, 它肯定是不可逆的;它肯定是不可逆的; 非准静态过程也是不可逆的:非准静态过程也是不可逆的: 因为非静态过程的中间态一因为非静态过程的中间态一 般是非平衡态般是非平衡态, ,非常复杂非常复杂, ,没没 有统一的状态参量有统一的状态参量, ,这种过这种过 程沿反方向进行时程沿反方向进行时, ,每一步每一步 都做到是原来沿正方向进行都做到是原来沿正方向进行 时的重演是不可能的。时的重演是不可能的。 热学第四章大学物理21 18241824年卡诺在他的热机理论中首先阐明了可逆热机年卡诺在他的热机理论中首先阐明了可逆热机 的概念的概念, ,并陈述了具有

20、种意义的卡诺定理并陈述了具有种意义的卡诺定理. . (1)(1)在相同的高温热源和相同的低温热源之间工作的在相同的高温热源和相同的低温热源之间工作的 一切可逆热机一切可逆热机, ,其效率都相等其效率都相等, ,与工作物质无关与工作物质无关. . 证明略证明略 高温热源高温热源T T1 1 Q Q2 2 低温热源低温热源T T2 2 T T2 2 T 0 S 0 S 0 S 0 或或 S0S0是热力学第二定律的是热力学第二定律的 数学表示。数学表示。 孤立系统中进行的可逆过程孤立系统中进行的可逆过程 一定是可逆绝热过程一定是可逆绝热过程( (等熵过程)等熵过程) S = 0S = 0 所以总起来

21、可以说:所以总起来可以说: 孤立系统内的一切过程孤立系统内的一切过程熵不会减少熵不会减少 S0 S0 (这也叫熵增加原理)(这也叫熵增加原理) 热学第四章大学物理35 例例 1,1,焦耳实验焦耳实验 例例 2,2,有限温差热传导有限温差热传导 以上各例都说明孤立系统中进行的不可以上各例都说明孤立系统中进行的不可 逆过程都是使系统的熵增加了逆过程都是使系统的熵增加了. . 例例 3,3,理想气体绝热自由膨胀理想气体绝热自由膨胀 补例:用熵增加原理说明补例:用熵增加原理说明 单热源热机是不可能制成的单热源热机是不可能制成的 热学第四章大学物理36 补例:用熵增加原理说明补例:用熵增加原理说明 单热

22、源热机是不可能制成的单热源热机是不可能制成的 假设有一单热源热机假设有一单热源热机 系统系统: : 热机热机+ +热源热源+ +重物重物( (及其他及其他) ) 热源热源 T T1 1Q Q1 1 W W 经过一个循环后经过一个循环后: : 热机热机 : : 工质复原工质复原 S S1 1=0=0 热源热源 : : 重物重物 : : 整个系统整个系统 : : S S3 3=0 (=0 (热力学状态未变热力学状态未变) ) 违反熵增原理违反熵增原理! ! 所以所以单热源热机是不可能制成的单热源热机是不可能制成的. . 0 1 1 1 2 T Q T dQ S 000 1 1 321 T Q SSSS 热学第四章大学物理37 低温热源低温热源T T2 2 Q Q2 2 热源热源 T T1 1Q Q1 1 W W 讨论:如果我们将系统扩大讨论:如果我们将系统扩大, , 增加一个低温热源增加一个低温热源, , 让热机向低温热源放热让热机向低温热源放热Q Q2, 2, 就有可能使就有可能使 S0.S0. 系统系统: : 热机热机+ +热源热源+ +重物重物( (及其他及其他) ) + +低温热源低温热源 低温热源:低温热源: 0 2 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论